Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions

被引:53
|
作者
Eldredge, Zachary [1 ,2 ]
Gong, Zhe-Xuan [1 ,2 ,4 ]
Young, Jeremy T. [1 ,2 ]
Moosavian, Ali Hamed [1 ,2 ]
Foss-Feig, Michael [1 ,2 ,3 ]
Gorshkov, Alexey V. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] US Army Res Lab, Adelphi, MD 20783 USA
[4] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
LIEB-ROBINSON BOUNDS; SYSTEMS; DYNAMICS; NETWORK; ATOMS;
D O I
10.1103/PhysRevLett.119.170503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are capable of faster entanglement generation, but the degree of the speedup possible is an open question. In this Letter, we present a protocol capable of transferring a quantum state across a distance L in d dimensions using long-range interactions with a strength bounded by 1= r(a). If alpha < d, the state transfer time is asymptotically independent of L; if alpha = d, the time scales logarithmically with the distance L; if d < alpha < d + 1, the transfer occurs in a time proportional to La-d; and if alpha >= d + 1, it occurs in a time proportional to L. We then use this protocol to upper bound the time required to create a state specified by a multiscale entanglement renormalization ansatz (MERA) tensor network and show that if the linear size of the MERA state is L, then it can be created in a time that scales with L identically to the state transfer up to logarithmic corrections. This protocol realizes an exponential speedup in cases of alpha = d, which could be useful in creating large entangled states for dipole-dipole (1= r(3)) interactions in three dimensions.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Violent relaxation in quantum fluids with long-range interactions
    Plestid, Ryan
    Mahon, Perry
    O'Dell, D. H. J.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [42] Coulomb blockade in a quantum wire with long-range interactions
    Maurey, H
    Giamarchi, T
    EUROPHYSICS LETTERS, 1997, 38 (09): : 681 - 686
  • [43] Ordered droplets in quantum magnets with long-range interactions
    Vojta, Thomas
    Hoyos, Jose A.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 1239 - 1241
  • [44] LONG-RANGE INTERACTIONS OF FERMIONS BY A TORSION QUANTUM EXCHANGE
    POZNANIN, PL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1975, (04): : 134 - 135
  • [45] Quantum communication in spin systems with long-range interactions
    Avellino, M.
    Fisher, A. J.
    Bose, S.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [46] Quasiparticles in Quantum Spin Chains with Long-Range Interactions
    Vanderstraeten, Laurens
    Van Damme, Maarten
    Buechler, Hans Peter
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [47] Long-range entanglement in quantum dots with Fermi-Hubbard physics
    Abaach, Sanaa
    Faqir, Mustapha
    El Baz, Morad
    PHYSICAL REVIEW A, 2022, 106 (02)
  • [48] Entanglement spectrum and quantum phase diagram of the long-range XXZ chain
    Schneider, J. T.
    Thomson, S. J.
    Sanchez-Palencia, L.
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [49] Entanglement transitions and quantum bifurcations under continuous long-range monitoring
    Russomanno, Angelo
    Piccitto, Giulia
    Rossini, Davide
    PHYSICAL REVIEW B, 2023, 108 (10)
  • [50] Long-range interactions and information transfer in spin chains
    Ronke, Rebecca
    Spiller, Tim
    D'Amico, Irene
    CONDENSED MATTER AND MATERIALS PHYSICS CONFERENCE (CMMP10), 2011, 286