Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions

被引:53
作者
Eldredge, Zachary [1 ,2 ]
Gong, Zhe-Xuan [1 ,2 ,4 ]
Young, Jeremy T. [1 ,2 ]
Moosavian, Ali Hamed [1 ,2 ]
Foss-Feig, Michael [1 ,2 ,3 ]
Gorshkov, Alexey V. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] US Army Res Lab, Adelphi, MD 20783 USA
[4] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
LIEB-ROBINSON BOUNDS; SYSTEMS; DYNAMICS; NETWORK; ATOMS;
D O I
10.1103/PhysRevLett.119.170503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are capable of faster entanglement generation, but the degree of the speedup possible is an open question. In this Letter, we present a protocol capable of transferring a quantum state across a distance L in d dimensions using long-range interactions with a strength bounded by 1= r(a). If alpha < d, the state transfer time is asymptotically independent of L; if alpha = d, the time scales logarithmically with the distance L; if d < alpha < d + 1, the transfer occurs in a time proportional to La-d; and if alpha >= d + 1, it occurs in a time proportional to L. We then use this protocol to upper bound the time required to create a state specified by a multiscale entanglement renormalization ansatz (MERA) tensor network and show that if the linear size of the MERA state is L, then it can be created in a time that scales with L identically to the state transfer up to logarithmic corrections. This protocol realizes an exponential speedup in cases of alpha = d, which could be useful in creating large entangled states for dipole-dipole (1= r(3)) interactions in three dimensions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order
    Chen, Xie
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [2] Entanglement and quantum-classical crossover in the extended XX model with long-range interactions
    Campelo, M. W. V.
    de Lima, J. P.
    Goncalves, L. L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 327 : 110 - 120
  • [3] Comparison of scalable fast methods for long-range interactions
    Arnold, Axel
    Fahrenberger, Florian
    Holm, Christian
    Lenz, Olaf
    Bolten, Matthias
    Dachsel, Holger
    Halver, Rene
    Kabadshow, Ivo
    Gaehler, Franz
    Heber, Frederik
    Iseringhausen, Julian
    Hofmann, Michael
    Pippig, Michael
    Potts, Daniel
    Sutmann, Godehard
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [4] Manipulating photonic quantum states with long-range interactions
    Yang, Fan
    Liu, Yong-Chun
    You, Li
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [5] Violent relaxation in quantum fluids with long-range interactions
    Plestid, Ryan
    Mahon, Perry
    O'Dell, D. H. J.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [6] Quasiparticles in Quantum Spin Chains with Long-Range Interactions
    Vanderstraeten, Laurens
    Van Damme, Maarten
    Buechler, Hans Peter
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [7] Generating symmetry-protected long-range entanglement
    Dutta, Shovan
    Kuhr, Stefan
    Cooper, Nigel R.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [8] Scrambling and entanglement spreading in long-range spin chains
    Pappalardi, Silvia
    Russomanno, Angelo
    Zunkovic, Bojan
    Iemini, Fernando
    Silva, Alessandro
    Fazio, Rosario
    PHYSICAL REVIEW B, 2018, 98 (13)
  • [9] Long-Range Interactions and Symmetry Breaking in Quantum Gases through Optical Feedback
    Zhang, Yong-Chang
    Walther, Valentin
    Pohl, Thomas
    PHYSICAL REVIEW LETTERS, 2018, 121 (07)
  • [10] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
    Tian, Liang
    Sun, Li-Li
    Zhu, Xiao-Yu
    Song, Xue-Ke
    Yan, Lei-Lei
    Liang, Er-Jun
    Su, Shi-Lei
    Feng, Mang
    CHINESE PHYSICS B, 2020, 29 (05)