Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions

被引:53
|
作者
Eldredge, Zachary [1 ,2 ]
Gong, Zhe-Xuan [1 ,2 ,4 ]
Young, Jeremy T. [1 ,2 ]
Moosavian, Ali Hamed [1 ,2 ]
Foss-Feig, Michael [1 ,2 ,3 ]
Gorshkov, Alexey V. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] US Army Res Lab, Adelphi, MD 20783 USA
[4] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
LIEB-ROBINSON BOUNDS; SYSTEMS; DYNAMICS; NETWORK; ATOMS;
D O I
10.1103/PhysRevLett.119.170503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In short-range interacting systems, the speed at which entanglement can be established between two separated points is limited by a constant Lieb-Robinson velocity. Long-range interacting systems are capable of faster entanglement generation, but the degree of the speedup possible is an open question. In this Letter, we present a protocol capable of transferring a quantum state across a distance L in d dimensions using long-range interactions with a strength bounded by 1= r(a). If alpha < d, the state transfer time is asymptotically independent of L; if alpha = d, the time scales logarithmically with the distance L; if d < alpha < d + 1, the transfer occurs in a time proportional to La-d; and if alpha >= d + 1, it occurs in a time proportional to L. We then use this protocol to upper bound the time required to create a state specified by a multiscale entanglement renormalization ansatz (MERA) tensor network and show that if the linear size of the MERA state is L, then it can be created in a time that scales with L identically to the state transfer up to logarithmic corrections. This protocol realizes an exponential speedup in cases of alpha = d, which could be useful in creating large entangled states for dipole-dipole (1= r(3)) interactions in three dimensions.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fast high-fidelity multiqubit state transfer with long-range interactions
    Hong, Yifan
    Lucas, Andrew
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [2] Hierarchy of entanglement renormalization and long-range entangled states
    Li, Meng -Yuan
    Ye, Peng
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [3] Renormalization of membrane rigidity by long-range interactions
    Dean, DS
    Horgan, RR
    PHYSICAL REVIEW E, 2006, 73 (01):
  • [4] Fast long-range charge transfer in quantum dot arrays
    Ban, Yue
    Chen, Xi
    Platero, Gloria
    NANOTECHNOLOGY, 2018, 29 (50)
  • [5] Entanglement, fractional magnetization, and long-range interactions
    Cadarso, Andrea
    Sanz, Mikel
    Wolf, Michael M.
    Cirac, J. Ignacio
    Perez-Garcia, David
    PHYSICAL REVIEW B, 2013, 87 (03):
  • [6] Dispersive charge transfer model with long-range quantum interactions
    Zielinski, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 217 (01) : 43 - 71
  • [7] Entanglement properties of disordered quantum spin chains with long-range antiferromagnetic interactions
    Mohdeb, Y.
    Vahedi, J.
    Moure, N.
    Roshani, A.
    Lee, Hyun-Yong
    Bhatt, R. N.
    Kettemann, Stefan
    Haas, Stephan
    PHYSICAL REVIEW B, 2020, 102 (21)
  • [8] Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order
    Chen, Xie
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [9] Entanglement in a periodic XX model with long-range interactions
    Zhong, Ming
    Tong, Peiqing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (35)
  • [10] Entanglement and quantum-classical crossover in the extended XX model with long-range interactions
    Campelo, M. W. V.
    de Lima, J. P.
    Goncalves, L. L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 327 : 110 - 120