Controlling turbulence in the complex Ginzburg-Landau equation

被引:58
|
作者
Xiao, JH [1 ]
Hu, G
Yang, JZ
Gao, JH
机构
[1] Beijing Univ Posts & Telecommun, Dept Basic Sci, Beijing 100876, Peoples R China
[2] China Ctr Adv Sci & Technol, Beijing 100080, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
D O I
10.1103/PhysRevLett.81.5552
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Controlling turbulence in the complex Ginzburg-Landau equation (CGLE) is investigated. The CGLE is generalized to include gradient force. Local injections (pinnings) are applied for turbulence control. It is found that local injections are effective in eliminating turbulence. In particular, for large gradient force, it is possible to suppress fully developed turbulence by adding a few injections much less in number than the number of positive Lyapunov exponents of the system. The high efficiency of controlling is heuristically explained, based on the spatial correlation length and space-time-variable transformation.
引用
收藏
页码:5552 / 5555
页数:4
相关论文
共 50 条
  • [21] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [22] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [23] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581
  • [24] Inviscid limits of the complex Ginzburg-Landau equation
    Bechouche, P
    Jüngel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) : 201 - 226
  • [25] Extensive properties of the complex Ginzburg-Landau equation
    Collet, P
    Eckmann, JP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 699 - 722
  • [26] On the complex Ginzburg-Landau equation with a delayed feedback
    Casal, AC
    Díaz, JI
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (01): : 1 - 17
  • [27] Global attractors for the complex Ginzburg-Landau equation
    Li, Fang
    You, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 14 - 24
  • [28] Transition to antispirals in the complex Ginzburg-Landau equation
    Wang, HL
    Ou-Yang, Q
    CHINESE PHYSICS LETTERS, 2004, 21 (08) : 1437 - 1440
  • [29] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [30] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631