Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology

被引:21
作者
Garcia-Peraza-Herrera, Luis C. [1 ,7 ]
Everson, Martin [2 ,3 ]
Lovat, Laurence [2 ,3 ]
Wang, Hsiu-Po [4 ]
Wang, Wen Lun [5 ]
Haidry, Rehan [2 ,3 ]
Stoyanov, Danail [6 ]
Ourselin, Sebastien [7 ]
Vercauteren, Tom [7 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, London, England
[2] UCL, Div Surg & Intervent Sci, London, England
[3] Univ Coll Hosp NHS Fdn Trust, Dept Gastroenterol, London, England
[4] Natl Taiwan Univ, Dept Internal Med, Taipei, Taiwan
[5] I Shou Univ, Dept Internal Med, E Da Hosp, Kaohsiung, Taiwan
[6] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
[7] KCL, Sch Biomed Engn & Imaging Sci, London, England
基金
英国工程与自然科学研究理事会;
关键词
Early squamous cell neoplasia (ESCN); Intrapapillary capillary loop (IPCL); Class activation map (CAM); SQUAMOUS-CELL CARCINOMA; ESOPHAGEAL; DEPTH;
D O I
10.1007/s11548-020-02127-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Early squamous cell neoplasia (ESCN) in the oesophagus is a highly treatable condition. Lesions confined to the mucosal layer can be curatively treated endoscopically. We build a computer-assisted detection system that can classify still images or video frames as normal or abnormal with high diagnostic accuracy. Methods We present a new benchmark dataset containing 68K binary labelled frames extracted from 114 patient videos whose imaged areas have been resected and correlated to histopathology. Our novel convolutional network architecture solves the binary classification task and explains what features of the input domain drive the decision-making process of the network. Results The proposed method achieved an average accuracy of 91.7% compared to the 94.7% achieved by a group of 12 senior clinicians. Our novel network architecture produces deeply supervised activation heatmaps that suggest the network is looking at intrapapillary capillary loop patterns when predicting abnormality. Conclusion We believe that this dataset and baseline method may serve as a reference for future benchmarks on both video frame classification and explainability in the context of ESCN detection. A future work path of high clinical relevance is the extension of the classification to ESCN types.
引用
收藏
页码:651 / 659
页数:9
相关论文
共 18 条
  • [1] [Anonymous], 1996, Diges Endosc, DOI DOI 10.1111/J.1443-1661.1996.TB00429.X
  • [2] Lymph Node Metastases in Esophageal Carcinoma: An Endoscopist's View
    Cho, Jin Woong
    Choi, Suck Chei
    Jang, Jae Young
    Shin, Sung Kwan
    Choi, Kee Don
    Lee, Jun Haeng
    Kim, Sang Gyun
    Sung, Jae Kyu
    Jeon, Seong Woo
    Choi, Il Ju
    Kim, Gwang Ha
    Jee, Sam Ryong
    Lee, Wan Sik
    Jung, Hwoon-Yong
    [J]. CLINICAL ENDOSCOPY, 2014, 47 (06) : 523 - 529
  • [3] Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study
    Everson, M.
    Herrera, L. C. G. P.
    Li, W.
    Luengo, I. Muntion
    Ahmad, O.
    Banks, M.
    Magee, C.
    Alzoubaidi, D.
    Hsu, H. M.
    Graham, D.
    Vercauteren, T.
    Lovat, L.
    Ourselin, S.
    Kashin, S.
    Wang, Hsiu-Po
    Wang, Wen-Lun
    Haidry, R. J.
    [J]. UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (02) : 297 - 306
  • [4] Garcia-Peraza-Herrera LC, 2018, ARXIV180500632
  • [5] Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
    Guo, LinJie
    Xiao, Xiao
    Wu, ChunCheng
    Zeng, Xianhui
    Zhang, Yuhang
    Du, Jiang
    Bai, Shuai
    Xie, Jia
    Zhang, Zhiwei
    Li, Yuhong
    Wang, Xuedan
    Cheung, Onpan
    Sharma, Malay
    Liu, Jingjia
    Hu, Bing
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 91 (01) : 41 - 51
  • [6] New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection
    Hassan, Cesare
    Wallace, Michael B.
    Sharma, Pratee
    Maselli, Rooerta
    Craviotto, Vincenzo
    Spadaccini, Marco
    Repici, Alessandro
    [J]. GUT, 2020, 69 (05) : 799 - 800
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Krippendorff K., 2018, Content analysis: An introduction to its methodology
  • [9] Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study
    Luo, Huiyan
    Xu, Guoliang
    Li, Chaofeng
    He, Longjun
    Luo, Linna
    Wang, Zixian
    Jing, Bingzhong
    Deng, Yishu
    Jin, Ying
    Li, Yin
    Li, Bin
    Tan, Wencheng
    He, Caisheng
    Seeruttun, Sharvesh Raj
    Wu, Qiubao
    Huang, Jun
    Huang, De-wang
    Chen, Bin
    Lin, Shao-bin
    Chen, Qin-ming
    Yuan, Chu-ming
    Chen, Hai-xin
    Pu, Heng-ying
    Zhou, Feng
    He, Yun
    Xu, Rui-hua
    [J]. LANCET ONCOLOGY, 2019, 20 (12) : 1645 - 1654
  • [10] How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis
    Menon, Shyam
    Trudgill, Nigel
    [J]. ENDOSCOPY INTERNATIONAL OPEN, 2014, 2 (02) : E46 - E50