Intrapapillary capillary loop classification in magnification endoscopy: open dataset and baseline methodology

被引:24
作者
Garcia-Peraza-Herrera, Luis C. [1 ,7 ]
Everson, Martin [2 ,3 ]
Lovat, Laurence [2 ,3 ]
Wang, Hsiu-Po [4 ]
Wang, Wen Lun [5 ]
Haidry, Rehan [2 ,3 ]
Stoyanov, Danail [6 ]
Ourselin, Sebastien [7 ]
Vercauteren, Tom [7 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, London, England
[2] UCL, Div Surg & Intervent Sci, London, England
[3] Univ Coll Hosp NHS Fdn Trust, Dept Gastroenterol, London, England
[4] Natl Taiwan Univ, Dept Internal Med, Taipei, Taiwan
[5] I Shou Univ, Dept Internal Med, E Da Hosp, Kaohsiung, Taiwan
[6] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
[7] KCL, Sch Biomed Engn & Imaging Sci, London, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Early squamous cell neoplasia (ESCN); Intrapapillary capillary loop (IPCL); Class activation map (CAM); SQUAMOUS-CELL CARCINOMA; ESOPHAGEAL; DEPTH;
D O I
10.1007/s11548-020-02127-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Early squamous cell neoplasia (ESCN) in the oesophagus is a highly treatable condition. Lesions confined to the mucosal layer can be curatively treated endoscopically. We build a computer-assisted detection system that can classify still images or video frames as normal or abnormal with high diagnostic accuracy. Methods We present a new benchmark dataset containing 68K binary labelled frames extracted from 114 patient videos whose imaged areas have been resected and correlated to histopathology. Our novel convolutional network architecture solves the binary classification task and explains what features of the input domain drive the decision-making process of the network. Results The proposed method achieved an average accuracy of 91.7% compared to the 94.7% achieved by a group of 12 senior clinicians. Our novel network architecture produces deeply supervised activation heatmaps that suggest the network is looking at intrapapillary capillary loop patterns when predicting abnormality. Conclusion We believe that this dataset and baseline method may serve as a reference for future benchmarks on both video frame classification and explainability in the context of ESCN detection. A future work path of high clinical relevance is the extension of the classification to ESCN types.
引用
收藏
页码:651 / 659
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2018, ARXIV180500632
[2]   Lymph Node Metastases in Esophageal Carcinoma: An Endoscopist's View [J].
Cho, Jin Woong ;
Choi, Suck Chei ;
Jang, Jae Young ;
Shin, Sung Kwan ;
Choi, Kee Don ;
Lee, Jun Haeng ;
Kim, Sang Gyun ;
Sung, Jae Kyu ;
Jeon, Seong Woo ;
Choi, Il Ju ;
Kim, Gwang Ha ;
Jee, Sam Ryong ;
Lee, Wan Sik ;
Jung, Hwoon-Yong .
CLINICAL ENDOSCOPY, 2014, 47 (06) :523-529
[3]   Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study [J].
Everson, M. ;
Herrera, L. C. G. P. ;
Li, W. ;
Luengo, I. Muntion ;
Ahmad, O. ;
Banks, M. ;
Magee, C. ;
Alzoubaidi, D. ;
Hsu, H. M. ;
Graham, D. ;
Vercauteren, T. ;
Lovat, L. ;
Ourselin, S. ;
Kashin, S. ;
Wang, Hsiu-Po ;
Wang, Wen-Lun ;
Haidry, R. J. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (02) :297-306
[4]   Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) [J].
Guo, LinJie ;
Xiao, Xiao ;
Wu, ChunCheng ;
Zeng, Xianhui ;
Zhang, Yuhang ;
Du, Jiang ;
Bai, Shuai ;
Xie, Jia ;
Zhang, Zhiwei ;
Li, Yuhong ;
Wang, Xuedan ;
Cheung, Onpan ;
Sharma, Malay ;
Liu, Jingjia ;
Hu, Bing .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (01) :41-51
[5]   New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection [J].
Hassan, Cesare ;
Wallace, Michael B. ;
Sharma, Pratee ;
Maselli, Rooerta ;
Craviotto, Vincenzo ;
Spadaccini, Marco ;
Repici, Alessandro .
GUT, 2020, 69 (05) :799-800
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
Inoue H., 1996, DIGEST ENDOSC, V8, P134, DOI [10.1111/j.1443-1661.1996.tb00429.x, DOI 10.1111/J.1443-1661.1996.TB00429.X]
[8]  
Krippendorff K, 2019, CONTENT ANAL INTRO I
[9]   Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study [J].
Luo, Huiyan ;
Xu, Guoliang ;
Li, Chaofeng ;
He, Longjun ;
Luo, Linna ;
Wang, Zixian ;
Jing, Bingzhong ;
Deng, Yishu ;
Jin, Ying ;
Li, Yin ;
Li, Bin ;
Tan, Wencheng ;
He, Caisheng ;
Seeruttun, Sharvesh Raj ;
Wu, Qiubao ;
Huang, Jun ;
Huang, De-wang ;
Chen, Bin ;
Lin, Shao-bin ;
Chen, Qin-ming ;
Yuan, Chu-ming ;
Chen, Hai-xin ;
Pu, Heng-ying ;
Zhou, Feng ;
He, Yun ;
Xu, Rui-hua .
LANCET ONCOLOGY, 2019, 20 (12) :1645-1654
[10]   How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis [J].
Menon, Shyam ;
Trudgill, Nigel .
ENDOSCOPY INTERNATIONAL OPEN, 2014, 2 (02) :E46-E50