Maximal abelian subalgebras of Banach algebras

被引:0
作者
Dales, H. G. [1 ]
Pham, H. L. [2 ]
Zelazko, W. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Victoria Univ Wellington, Sch Math & Stat, Wellington 6140, New Zealand
[3] Polish Acad Sci, Inst Math, Sniadeckich 8,POB 21, PL-00656 Warsaw, Poland
关键词
46H10; (primary); IDEALS; OPERATORS; SPACES;
D O I
10.1112/blms.12551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a commutative, unital Banach algebra. We consider the number of different non-commutative, unital Banach algebras C such that A is a maximal abelian subalgebra in C. For example, we shall prove that, in the case where A is an infinite-dimensional, unital Banach function algebra, A is a maximal abelian subalgebra in infinitely-many closed subalgebras of B(A) such that no two distinct subalgebras are isomorphic; the same result holds for certain examples A that are local algebras. We shall also give examples of uniform algebras of the form C(K), where K is a compact space, with the property that there exists a family of arbitrarily large cardinality of pairwise non-isomorphic unital Banach algebras C such that each C contains B(C(K)) as a closed subalgebra and is such that C(K) is a maximal abelian subalgebra in C.
引用
收藏
页码:1879 / 1897
页数:19
相关论文
共 50 条
  • [21] The maximal dimension of unital subalgebras of the matrix algebra
    Agore, Ana L.
    FORUM MATHEMATICUM, 2017, 29 (01) : 1 - 5
  • [22] Spherical nilpotent orbits and abelian subalgebras in isotropy representations
    Gandini, Jacopo
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 323 - 352
  • [23] Reflection equation algebras, coideal subalgebras, and their centres
    Kolb, Stefan
    Stokman, Jasper V.
    SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04): : 621 - 664
  • [24] On a class of smooth Frechet subalgebras of C*-algebras
    Bhatt, Subhash J.
    Karia, Dinesh J.
    Shah, Meetal M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03): : 393 - 413
  • [25] Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras
    Kaniuth, E.
    Lau, A. T.
    Ulger, A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 255 - 275
  • [26] On the structure of Borel stable abelian subalgebras in infinitesimal symmetric spaces
    Cellini, Paola
    Frajria, Pierluigi Moeseneder
    Papi, Paolo
    Pasquali, Marco
    SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02): : 399 - 437
  • [27] BANACH PARTIAL *-ALGEBRAS: AN OVERVIEW
    Antoine, J-P
    Trapani, C.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (01): : 71 - 98
  • [28] Examples of mixing subalgebras of von Neumann algebras and their normalizers
    Jolissaint, Paul
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (03) : 399 - 413
  • [29] Core inverse in Banach algebras
    Mosic, Dijana
    Li, Tingting
    Chen, Jianlong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 399 - 412
  • [30] On character amenable Banach algebras
    Hu, Z.
    Monfared, M. Sangani
    Traynor, T.
    STUDIA MATHEMATICA, 2009, 193 (01) : 53 - 78