Maximal abelian subalgebras of Banach algebras

被引:0
作者
Dales, H. G. [1 ]
Pham, H. L. [2 ]
Zelazko, W. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Victoria Univ Wellington, Sch Math & Stat, Wellington 6140, New Zealand
[3] Polish Acad Sci, Inst Math, Sniadeckich 8,POB 21, PL-00656 Warsaw, Poland
关键词
46H10; (primary); IDEALS; OPERATORS; SPACES;
D O I
10.1112/blms.12551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a commutative, unital Banach algebra. We consider the number of different non-commutative, unital Banach algebras C such that A is a maximal abelian subalgebra in C. For example, we shall prove that, in the case where A is an infinite-dimensional, unital Banach function algebra, A is a maximal abelian subalgebra in infinitely-many closed subalgebras of B(A) such that no two distinct subalgebras are isomorphic; the same result holds for certain examples A that are local algebras. We shall also give examples of uniform algebras of the form C(K), where K is a compact space, with the property that there exists a family of arbitrarily large cardinality of pairwise non-isomorphic unital Banach algebras C such that each C contains B(C(K)) as a closed subalgebra and is such that C(K) is a maximal abelian subalgebra in C.
引用
收藏
页码:1879 / 1897
页数:19
相关论文
共 50 条
[21]   The maximal dimension of unital subalgebras of the matrix algebra [J].
Agore, Ana L. .
FORUM MATHEMATICUM, 2017, 29 (01) :1-5
[22]   Spherical nilpotent orbits and abelian subalgebras in isotropy representations [J].
Gandini, Jacopo ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 :323-352
[23]   On a class of smooth Frechet subalgebras of C*-algebras [J].
Bhatt, Subhash J. ;
Karia, Dinesh J. ;
Shah, Meetal M. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03) :393-413
[24]   Reflection equation algebras, coideal subalgebras, and their centres [J].
Kolb, Stefan ;
Stokman, Jasper V. .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04) :621-664
[25]   Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras [J].
Kaniuth, E. ;
Lau, A. T. ;
Ulger, A. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :255-275
[26]   On the structure of Borel stable abelian subalgebras in infinitesimal symmetric spaces [J].
Cellini, Paola ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Pasquali, Marco .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02) :399-437
[27]   COMMUTATIVELY ORDERED BANACH ALGEBRAS [J].
Mouton, S. ;
Muzundu, K. .
QUAESTIONES MATHEMATICAE, 2013, 36 (04) :559-587
[28]   MULTIPLICATIVE (IN)STABILITY OF BANACH ALGEBRAS [J].
Ferri, Stefano ;
Neufang, Matthias .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025,
[29]   Examples of mixing subalgebras of von Neumann algebras and their normalizers [J].
Jolissaint, Paul .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (03) :399-413
[30]   Multiplier completion of Banach algebras with application to quantum groups [J].
Nemati, Mehdi ;
Rizi, Maryam Rajaei .
ARCHIV DER MATHEMATIK, 2021, 117 (02) :165-177