A Generalization of Posner's Theorem on Derivations in Rings

被引:22
作者
Almahdi, Fuad Ali Ahmed [1 ]
Mamouni, Abdellah [2 ]
Tamekkante, Mohammed [3 ]
机构
[1] King Khalid Univ, Dept Math, Fac Sci, POB 9004, Abha, Saudi Arabia
[2] Univ Moulay Ismail, Dept Math, Fac Sci & Technol, Box 509 Boutalamine, Errachidia, Morocco
[3] Univ Moulay Ismail, Lab MACS, Fac Sci, PB 11201, Zitoune 5000, Meknes, Morocco
关键词
Prime and semiprime rings; Posner's result; CENTRALIZING MAPPINGS; ADDITIVE MAPS; PRIME;
D O I
10.1007/s13226-020-0394-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize the Posner's theorem on derivations in rings as follows: Let R be an arbitrary ring, P be a prime ideal of R, and d be a derivation of R. If [[x, d(x)], y] is an element of P for all x, y is an element of R, then d(R) subset of P or R/P is commutative. In particular, if R is semiprime and d is a centralizing derivation of R, we prove that either R is commutative or there exists a minimal prime ideal P of R such that d(R) subset of P. As a consequence, we show that for any semiprime ring with a centralizing derivation there exists at least a minimal prime ideal P such that d(P) subset of P.
引用
收藏
页码:187 / 194
页数:8
相关论文
共 17 条
[1]   A note on automorphisms of prime and semiprime rings [J].
Ali, A ;
Yasen, M .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2005, 45 (02) :243-246
[2]  
Beiclar K. I., 1984, T SEM PETROVSK, V10, P227
[3]   On additive maps of prime rings satisfying the Engel condition [J].
Beidar, KI ;
Fong, Y ;
Lee, PH ;
Wong, TL .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (12) :3889-3902
[4]   ORTHOGONAL COMPLETENESS AND ALGEBRAIC SYSTEMS [J].
BEIDAR, KI ;
MIKHALEV, AV .
RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (06) :51-95
[5]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[6]  
BERGEN J, 1989, P AM MATH SOC, V106, P297
[7]   CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :385-394
[8]   ON ADDITIVE MAPS OF PRIME-RINGS [J].
BRESAR, M ;
HVALA, B .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (03) :377-381
[9]   Elements of Minimal Prime Ideals in General Rings [J].
Burgess, W. D. ;
Lashgari, A. ;
Mojiri, A. .
ADVANCES IN RING THEORY, 2010, :69-+
[10]  
CHUANG CL, 1991, P AM MATH SOC, V113, P613