Isoperimetry between exponential and Gaussia

被引:30
作者
Barthe, F. [1 ]
Cattiaux, P.
Roberto, C.
机构
[1] Univ Toulouse 3, Inst Math, Lab Stat Probabilites, UMR 5583, F-31062 Toulouse, France
[2] Ecole Polytech, CNRS 756, CMAP, F-91128 Palaiseau, France
[3] Univ Paris 10, Equipe MODALX, SEGMI, UFR, F-92001 Nanterre, France
[4] Univ Paris 12, Lab Anal Math Appl, UMR 8050, F-77454 Creteil, France
关键词
isoperimetry; super-poincare inequality;
D O I
10.1214/EJP.v12-441
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the isoperimetric problem for product probability measures with tails between the exponential and the Gaussian regime. In particular we exhibit many examples where coordinate half - spaces are approximate solutions of the isoperimetric problem.
引用
收藏
页码:1212 / 1237
页数:26
相关论文
共 43 条
[1]   Uniform positivity improving property, Sobolev inequalities, and spectral gaps [J].
Aida, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (01) :152-185
[2]  
ANE C, 2000, PANOROMAS SYNTHESES, V10
[3]  
[Anonymous], 2000, Lecture Notes in Math.
[4]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[5]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[6]   Infinite dimensional isoperimetric inequalities in product spaces with the supremum distance [J].
Barthe, F .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (02) :293-308
[7]   Sobolev inequalities for probability measures on the real line [J].
Barthe, F ;
Roberto, C .
STUDIA MATHEMATICA, 2003, 159 (03) :481-497
[8]   Log-concave and spherical models in isoperimetry [J].
Barthe, F .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (01) :32-55
[9]  
Barthe F., 2001, ANN FAC SCI TOULOUSE, V10, P393
[10]  
BARTHE F, IN PRESS REV MAT IBE