A note on the Tu-Deng conjecture

被引:3
作者
Cheng Kaimin [1 ,2 ]
Hong Shaofang [1 ]
Zhong Yuanming [1 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Dept Math, Jinjiang Coll, Pengshan 620860, Peoples R China
基金
美国国家科学基金会;
关键词
2-adic valuation; Tu-Deng conjecture; weight;
D O I
10.1007/s11424-015-2240-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer. For any positive integer x = I pound (i=0) (a) x (i) 2 (i) , where x (i) = 0, 1, we define the weight w(x) of x by w(x) a parts per thousand" I pound (i=0) (a) x (i) . For any integer t with 0 < t < 2 (k) - 1, let S (t) a parts per thousand" {(a, b) a a"currency sign(2)|a + b a parts per thousand t (mod 2 (k) - 1), w(a) + w(b) < k, 0 a parts per thousand currency sign a, b a parts per thousand currency sign 2 (k) - 2}. This paper gives explicit formulas for cardinality of S (t) in the cases of w(t) a parts per thousand currency sign 3 and an upper bound for cardinality of S (t) when w(t) = 4. From this one then concludes that a conjecture proposed by Tu and Deng in 2011 is true if w(t) <= 4.
引用
收藏
页码:702 / 724
页数:23
相关论文
共 2 条
[1]  
[涂自然 TU Ziran], 2011, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V31, P512
[2]   A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity [J].
Tu, Ziran ;
Deng, Yingpu .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (01) :1-14