The Bures Metric for Generative Adversarial Networks

被引:6
作者
De Meulemeester, Hannes [1 ]
Schreurs, Joachim [1 ]
Fanuel, Michael [2 ]
De Moor, Bart [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, ESAT STADIUS, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[2] Univ Lille, Cent Lille, CNRS, UMR 9189 CRIStAL, F-59000 Lille, France
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT II | 2021年 / 12976卷
基金
欧洲研究理事会;
关键词
Generative Adversarial Networks; Mode collapse; Optimal transport; DISTANCE;
D O I
10.1007/978-3-030-86520-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples. However, under certain circumstances, the training of GANs can lead to mode collapse or mode dropping. To address this problem, we use the last layer of the discriminator as a feature map to study the distribution of the real and the fake data. During training, we propose to match the real batch diversity to the fake batch diversity by using the Bures distance between covariance matrices in this feature space. The computation of the Bures distance can be conveniently done in either feature space or kernel space in terms of the covariance and kernel matrix respectively. We observe that diversity matching reduces mode collapse substantially and has a positive effect on sample quality. On the practical side, a very simple training procedure is proposed and assessed on several data sets.
引用
收藏
页码:52 / 66
页数:15
相关论文
共 39 条
[1]  
[Anonymous], INT C LEARNING REPRE
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]   On the Bures-Wasserstein distance between positive definite matrices [J].
Bhatia, Rajendra ;
Jain, Tanvi ;
Lim, Yongdo .
EXPOSITIONES MATHEMATICAE, 2019, 37 (02) :165-191
[4]  
Binkowski Mikolaj, 2018, ICLR
[5]  
Dieng A.B., 2020, ARXIV191004302
[6]   THE FRECHET DISTANCE BETWEEN MULTIVARIATE NORMAL-DISTRIBUTIONS [J].
DOWSON, DC ;
LANDAU, BV .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :450-455
[7]  
Elfeki M, 2019, PR MACH LEARN RES, V97
[8]   ON A FORMULA FOR THE L2 WASSERSTEIN METRIC BETWEEN MEASURES ON EUCLIDEAN AND HILBERT-SPACES [J].
GELBRICH, M .
MATHEMATISCHE NACHRICHTEN, 1990, 147 :185-203
[9]   Multi-Agent Diverse Generative Adversarial Networks [J].
Ghosh, Arnab ;
Kulharia, Viveka ;
Namboodiri, Vinay ;
Torr, Philip H. S. ;
Dokania, Puneet K. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8513-8521
[10]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672