Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae

被引:31
作者
Itakura, Alan K. [1 ,2 ]
Chakravarty, Anupam K. [2 ]
Jakobson, Christopher M. [2 ]
Jarosz, Daniel F. [2 ,3 ]
机构
[1] Stanford Univ, Dept Biol, 269 Campus Dr, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem & Syst Biol, 269 Campus Dr, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Dev Biol, 269 Campus Dr, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
YEAST PRION; GENETIC-ANALYSIS; GLOBAL ANALYSIS; SAM DOMAIN; PROTEIN; INHERITANCE; EVOLUTION; SPORULATION; TRANSFORMATION; PROPAGATION;
D O I
10.1016/j.molcel.2019.10.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Theory and experiments suggest that organisms would benefit from pre-adaptation to future stressors based on reproducible environmental fluctuations experienced by their ancestors, but the mechanisms driving pre-adaptation remain enigmatic. We report that the [SMAUG(+)] prion allows yeast to anticipate nutrient repletion after periods of starvation, providing a strong selective advantage. By transforming the landscape of post-transcriptional gene expression, [SMAUG(+)] regulates the decision between two broad growth and survival strategies: mitotic proliferation or meiotic differentiation into a stress-resistant state. [SMAUG(+)] is common in laboratory yeast strains, where standard propagation practice produces regular cycles of nutrient scarcity followed by repletion. Distinct [SMAUG(+)] variants are also widespread in wild yeast isolates from multiple niches, establishing that prion polymorphs can be utilized in natural populations. Our data provide a striking example of how protein-based epigenetic switches, hidden in plain sight, can establish a transgenerational memory that integrates adaptive prediction into developmental decisions.
引用
收藏
页码:266 / +
页数:19
相关论文
共 93 条
[1]   RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast [J].
Agarwala, Sudeep D. ;
Blitzblau, Hannah G. ;
Hochwagen, Andreas ;
Fink, Gerald R. .
PLOS GENETICS, 2012, 8 (06)
[2]   A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae [J].
Alberti, Simon ;
Gitler, Aaron D. ;
Lindquist, Susan .
YEAST, 2007, 24 (10) :913-919
[3]  
Anand R., 2017, Protocol Exchange, DOI DOI 10.1038/PROTEX.2017.021A
[4]   Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p [J].
Aviv, T ;
Lin, Z ;
Ben-Ari, G ;
Smibert, CA ;
Sicheri, F .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (02) :168-176
[5]   The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators [J].
Aviv, T ;
Lin, Z ;
Lau, S ;
Rendl, LM ;
Sicheri, F ;
Smibert, CA .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (08) :614-621
[6]   The [PSI+] Prion Exists as a Dynamic Cloud of Variants [J].
Bateman, David A. ;
Wickner, Reed B. .
PLOS GENETICS, 2013, 9 (01)
[7]   Adaptation, extinction and global change [J].
Bell, Graham ;
Collins, Sinead .
EVOLUTIONARY APPLICATIONS, 2008, 1 (01) :3-16
[8]   Four linked genes participate in controlling sporulation efficiency in budding yeast [J].
Ben-Ari, Giora ;
Zenvirth, Drora ;
Sherman, Amir ;
David, Lior ;
Klutstein, Michael ;
Lavi, Uri ;
Hillel, Jossi ;
Simchen, Giora .
PLOS GENETICS, 2006, 2 (11) :1815-1823
[9]   Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis [J].
Berchowitz, Luke E. ;
Kabachinski, Greg ;
Walker, Margaret R. ;
Carlile, Thomas M. ;
Gilbert, Wendy V. ;
Schwartz, Thomas U. ;
Amon, Angelika .
CELL, 2015, 163 (02) :406-418
[10]   Genetic interactions contribute less than additive effects to quantitative trait variation in yeast [J].
Bloom, Joshua S. ;
Kotenko, Iulia ;
Sadhu, Meru J. ;
Treusch, Sebastian ;
Albert, Frank W. ;
Kruglyak, Leonid .
NATURE COMMUNICATIONS, 2015, 6