Heterogeneous Catalytic Oxidation of As(III) on Nonferrous Metal Oxides in the Presence of H2O2

被引:128
作者
Kim, Dong-Hyo
Bokare, Alok D.
Koo, Min Suk
Choi, Wonyong [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea
关键词
HYDROGEN-PEROXIDE; ARSENITE OXIDATION; PHOTOCATALYTIC OXIDATION; HYDROXYL RADICALS; PULSE-RADIOLYSIS; SUPEROXIDE ION; RATE CONSTANTS; ARSENIC(III); DECOMPOSITION; ADSORPTION;
D O I
10.1021/es5056897
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The oxidation of As(III) (arsenite) to As(V) (arsenate), a critical pretreatment process for total arsenic removal, is easily achieved using chemical oxidation methods. Hydrogen peroxide (H2O2) is widely used as an environmentally benign oxidant but its practical use for the arsenite oxidation is limited by the strong pH dependence and slow oxidation kinetics. This study demonstrated that H2O2-induced oxidation of As(III) can be markedly enhanced in the presence of nonferrous metal oxides (e.g., WO3, TiO2, ZrO2) as a heterogeneous catalyst working over a wide pH range in ambient reaction conditions. In particular, TiO2 is an ideal catalyst because it is not only active and stable but also easily available and inexpensive. Although the photocatalytic oxidation of As(III) on TiO2 was intensively studied, the thermal catalytic activities of TiO2 and other nonferrous metal oxides for the arsenic oxidation have been little investigated. The heterogeneous oxidation rate increased with increasing the TiO2 surface area and [H2O2] and weakly depended on pH whereas the homogeneous oxidation by H2O2 alone was favored only at alkaline condition. The oxidation rate in the TiO2/H2O2 system was not reduced at all in the absence of dioxygen. It was not retarded at all by OH radical scavengers but markedly inhibited by hydroperoxyl radical scavengers. It is proposed that the surface complexation of H2O2 on TiO2 induces the generation of the surface hydroperoxyl radical through an inner-sphere electron transfer, which subsequently reacts with As(III). The catalytic activity of TiO2 was maintained without showing any sign of deactivation. The heterogeneous catalytic oxidation is proposed as a viable method for the preoxidation treatment of As(III)-contaminated water under ambient conditions.
引用
收藏
页码:3506 / 3513
页数:8
相关论文
共 55 条
[1]   Groundwater acidification caused by urban development in Perth, Western Australia: source, distribution, and implications for management [J].
Appleyard, S ;
Wong, S ;
Willis-Jones, B ;
Angeloni, J ;
Watkins, R .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2004, 42 (5-6) :579-585
[2]   Recent developments in selective catalytic epoxidations with H2O2 [J].
Arends, IWCE ;
Sheldon, RA .
TOPICS IN CATALYSIS, 2002, 19 (01) :133-141
[3]   PHOTOMETRIC-METHOD FOR THE DETERMINATION OF LOW CONCENTRATIONS OF HYDROGEN-PEROXIDE BY THE PEROXIDASE CATALYZED OXIDATION OF N,N-DIETHYL-P-PHENYLENEDIAMINE (DPD) [J].
BADER, H ;
STURZENEGGER, V ;
HOIGNE, J .
WATER RESEARCH, 1988, 22 (09) :1109-1115
[4]   Photoinduced Oxidation of Arsenite to Arsenate in the Presence of Goethite [J].
Bhandari, Narayan ;
Reeder, Richard J. ;
Strongin, Daniel R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (15) :8044-8051
[5]   Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite [J].
Bhandari, Narayan ;
Reeder, Richard J. ;
Strongin, Daniel R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (07) :2783-2789
[6]   Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J].
Bokare, Alok D. ;
Choi, Wonyong .
JOURNAL OF HAZARDOUS MATERIALS, 2014, 275 :121-135
[7]   Ti-peroxo species in the TS-1/H2O2/H2O system [J].
Bonino, F ;
Damin, A ;
Ricchiardi, G ;
Ricci, M ;
Spanò, G ;
D'Aloisio, R ;
Zecchina, A ;
Lamberti, C ;
Prestipino, C ;
Bordiga, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (11) :3573-3583
[8]   One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries [J].
Bundschuh, Jochen ;
Litter, Marta I. ;
Parvez, Faruque ;
Roman-Ross, Gabriela ;
Nicolli, Hugo B. ;
Jean, Jiin-Shuh ;
Liu, Chen-Wuing ;
Lopez, Dina ;
Armienta, Maria A. ;
Guilherme, Luiz R. G. ;
Gomez Cuevas, Alina ;
Cornejo, Lorena ;
Cumbal, Luis ;
Toujaguez, Regla .
SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 429 :2-35
[9]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[10]   KINETICS AND MECHANISM FOR THE OXIDATION OF ASCORBIC-ACID ASCORBATE BY HO2 O2- RADICALS - A PULSE-RADIOLYSIS AND STOPPED-FLOW PHOTOLIS STUDY [J].
CABELLI, DE ;
BIELSKI, BHJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (10) :1809-1812