Formation of rogue waves on the periodic background in a fifth-order nonlinear Schrodinger equation

被引:18
作者
Sinthuja, N. [1 ]
Manikandan, K. [1 ]
Senthilvelan, M. [1 ]
机构
[1] Bharathidasan Univ, Dept Nonlinear Dynam, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Fifth-order nonlinear Schrodinger equation; Rogue waves; Darboux transformation; Nonlinearization of Lax pair; Jacobian elliptic function; INTEGRABLE TURBULENCE; INSTABILITY; DISPERSION; SOLITONS;
D O I
10.1016/j.physleta.2021.127640
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct rogue wave solutions of a fifth-order nonlinear Schrodinger equation on the Jacobian elliptic function background. By combining Darboux transformation and the nonlinearization of spectral problem, we generate rogue wave solution on two different periodic wave backgrounds. We analyze the obtained solutions for different values of system parameter and point out certain novel features of our results. We also compute instability growth rate of both do and cn periodic background waves for the considered system through spectral stability problem. We show that instability growth rate decreases (increases) for dn-(cn) periodic waves when we vary the value of the elliptic modulus parameter. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrodinger Equation
    Zhang, Yan
    Liu, Yinping
    Tang, Xiaoyan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (04): : 339 - 344
  • [42] Dark soliton interactions for a fifth-order nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain
    Lan, Zhong-Zhou
    Gao, Yi-Tian
    Zhao, Chen
    Yang, Jin-Wei
    Su, Chuan-Qi
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 191 - 197
  • [43] Rogue waves on the periodic background in the higher-order modified Korteweg-de Vries equation
    Chen, Fa
    Zhang, Hai-Qiang
    MODERN PHYSICS LETTERS B, 2021, 35 (04):
  • [44] Characteristics of rogue waves on a soliton background in the general three-component nonlinear Schrodinger equation
    Wang, Xiu-Bin
    Han, Bo
    APPLIED MATHEMATICAL MODELLING, 2020, 88 : 688 - 700
  • [45] General coupled nonlinear Schrodinger equation: Breather waves and rogue waves on a soliton background, and dynamics
    Wang, Xiu-Bin
    Han, Bo
    Tian, Shou-Fu
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 128 : 83 - 91
  • [46] Rogue Waves and Their Dynamics on Bright-Dark Soliton Background of the Coupled Higher Order Nonlinear Schrodinger Equation
    Yan, Xue-Wei
    Tian, Shou-Fu
    Dong, Min-Jie
    Zhang, Tian-Tian
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (07)
  • [47] Multi-breather and high-order rogue waves for the nonlinear Schrodinger equation on the elliptic function background
    Feng, Bao-Feng
    Ling, Liming
    Takahashi, Daisuke A.
    STUDIES IN APPLIED MATHEMATICS, 2020, 144 (01) : 46 - 101
  • [48] Soliton and breather solutions for a fifth-order variable-coefficient nonlinear Schrodinger equation in an optical fiber
    Lan, Zhongzhou
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [49] Rogue waves of the nonlinear Schrodinger equation with even symmetric perturbations
    Ankiewicz, Adrian
    Chowdhury, Amdad
    Devine, Natasha
    Akhmediev, Nail
    JOURNAL OF OPTICS, 2013, 15 (06)
  • [50] Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation
    Bertola, Marco
    El, Gennady A.
    Tovbis, Alexander
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194):