Formation of rogue waves on the periodic background in a fifth-order nonlinear Schrodinger equation

被引:17
|
作者
Sinthuja, N. [1 ]
Manikandan, K. [1 ]
Senthilvelan, M. [1 ]
机构
[1] Bharathidasan Univ, Dept Nonlinear Dynam, Tiruchirappalli 620024, Tamil Nadu, India
关键词
Fifth-order nonlinear Schrodinger equation; Rogue waves; Darboux transformation; Nonlinearization of Lax pair; Jacobian elliptic function; INTEGRABLE TURBULENCE; INSTABILITY; DISPERSION; SOLITONS;
D O I
10.1016/j.physleta.2021.127640
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct rogue wave solutions of a fifth-order nonlinear Schrodinger equation on the Jacobian elliptic function background. By combining Darboux transformation and the nonlinearization of spectral problem, we generate rogue wave solution on two different periodic wave backgrounds. We analyze the obtained solutions for different values of system parameter and point out certain novel features of our results. We also compute instability growth rate of both do and cn periodic background waves for the considered system through spectral stability problem. We show that instability growth rate decreases (increases) for dn-(cn) periodic waves when we vary the value of the elliptic modulus parameter. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Interactions among solitons for a fifth-order variable coefficient nonlinear Schrodinger equation
    Liu, Suzhi
    Zhou, Qin
    Biswas, Anjan
    Alzahrani, Abdullah Kamis
    Li, Wenjun
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2797 - 2805
  • [32] Whitham modulation theory and periodic solutions for the fifth-order nonlinear Schrodinger equation in the Heisenberg ferromagnetic spin chain
    Zhang, Yan
    Hao, Hui-Qin
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12461 - 12477
  • [33] Periodic standing waves in the focusing nonlinear Schrodinger equation: Rogue waves and modulation instability
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    White, Robert E.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 405
  • [34] Breathers and Rogue Waves for the Fourth-Order Nonlinear Schrodinger Equation
    Zhang, Yan
    Liu, Yinping
    Tang, Xiaoyan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (04): : 339 - 344
  • [35] Rogue Waves of the Higher-Order Dispersive Nonlinear Schrodinger Equation
    Wang Xiao-Li
    Zhang Wei-Guo
    Zhai Bao-Guo
    Zhang Hai-Qiang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (04) : 531 - 538
  • [36] Localized Waves on the Periodic Background for the Derivative Nonlinear Schrodinger Equation
    Wu, Lifei
    Zhang, Yi
    Ye, Rusuo
    Jin, Jie
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, NMMP 2022, 2024, 459 : 335 - 347
  • [37] SOLITARY WAVE, BREATHER WAVE AND ROGUE WAVE SOLUTIONS OF AN INHOMOGENEOUS FIFTH-ORDER NONLINEAR SCHRODINGER EQUATION FROM HEISENBERG FERROMAGNETISM
    Feng, Lian-Li
    Tian, Shou-Fu
    Zhang, Tian-Tian
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (01) : 29 - 45
  • [38] Characteristics of Rogue Waves on a Soliton Background in the General Coupled Nonlinear Schrodinger Equation
    Wang, Xiu-Bin
    Han, Bo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (02) : 152 - 160
  • [39] Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrodinger equation
    Ma, Guoli
    Zhao, Jianbo
    Zhou, Qin
    Biswas, Anjan
    Liu, Wenjun
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2479 - 2484
  • [40] General coupled nonlinear Schrodinger equation: Breather waves and rogue waves on a soliton background, and dynamics
    Wang, Xiu-Bin
    Han, Bo
    Tian, Shou-Fu
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 128 : 83 - 91