Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes

被引:36
|
作者
Shi, Zhennan [1 ,2 ]
Xu, Siyuan [1 ,2 ]
Xing, Shenghui [1 ,2 ]
Yao, Ke [3 ]
Zhang, Lei [4 ,5 ]
Xue, Luxi [1 ,2 ]
Zhou, Peng [6 ]
Wang, Ming [6 ]
Yan, Guoquan [4 ,5 ]
Yang, Pengyuan [4 ,5 ]
Liu, Jing [7 ]
Hu, Zeping [3 ]
Lan, Fei [1 ,2 ,3 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Key Lab Epigenet & Metab, Minist Sci & Technol,Inst Biomed Sci, Shanghai, Peoples R China
[2] Fudan Univ, Zhongshan Hosp, Liver Canc Inst, Key Lab Carcinogenesis & Canc Invas,Minist Educ, Shanghai, Peoples R China
[3] Tsinghua Univ, Sch Pharmaceut Sci, Beijing 100084, Peoples R China
[4] Fudan Univ, Basic Med Coll, Inst Biomed Sci, Shanghai, Peoples R China
[5] Fudan Univ, Basic Med Coll, Dept Syst Biol Med, Shanghai, Peoples R China
[6] Chinese Acad Sci, Inst Biophys, Key Lab RNA Biol, Beijing, Peoples R China
[7] Chinese Acad Sci, Guangzhou Inst Biomed & Hlth, Key Lab Regenerat Biol, South China Inst Stem Cell Biol & Regenerat Med, Guangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
rRNA modification; 12S rRNA; oxidative phosphorylation; MESSENGER-RNA; LARGE SUBUNIT; METHYLTRANSFERASE; METHYLATION; DIFFERENTIATION; PLURIPOTENCY; BIOGENESIS; PATHWAYS;
D O I
10.1096/fj.201901331R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Embryonic stem cells (ESCs) are pluripotent stem cells with the ability to self-renew and to differentiate into any cell types of the 3 germ layers. Recent studies have demonstrated that there is a strong connection between mitochondrial function and pluripotency. Here, we report that methyltransferase like (Mettl) 17, identified from the clustered regularly interspaced short palindromic repeats knockout screen, is required for proper differentiation of mouse embryonic stem cells (mESCs). Mettl17 is located in mitochondria through its N-terminal targeting sequence and specifically interacts with 12S mitochondrial ribosomal RNA (mt-rRNA) as well as small subunits of mitochondrial ribosome (MSSUs). Loss of Mettl17 affects the stability of both 12S mt-rRNA and its associated proteins of MSSUs. We further showed that Mettl17 is an S-adenosyl methionine (SAM)-binding protein and regulates mitochondrial ribosome function in a SAM-binding-dependent manner. Loss of Mettl17 leads to around 70% reduction of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, revealing the first regulator of the m4C840 and indicating a crosstalk between the 2 nearby modifications. The defects of mitochondrial ribosome caused by deletion of Mettl17 lead to the impaired translation of mitochondrial protein-coding genes, resulting in significant changes in mitochondrial oxidative phosphorylation and cellular metabolome, which are important for mESC pluripotency.
引用
收藏
页码:13040 / 13050
页数:11
相关论文
共 11 条
  • [1] The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease
    Bohnsack, Markus T.
    Sloan, Katherine E.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2018, 75 (02) : 241 - 260
  • [2] FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation
    Popow, Johannes
    Alleaume, Anne-Marie
    Curk, Tomaz
    Schwarzl, Thomas
    Sauer, Sven
    Hentze, Matthias W.
    RNA, 2015, 21 (11) : 1873 - 1884
  • [3] RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis
    Hendrickson, Peter G.
    Silliker, Margaret E.
    CURRENT GENETICS, 2010, 56 (03) : 203 - 213
  • [4] RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina
    Poche, Ross A.
    Zhang, Min
    Rueda, Elda M.
    Tong, Xuefei
    McElwee, Melissa L.
    Wong, Leeyean
    Hsu, Chih-Wei
    Dejosez, Marion
    Burns, Alan R.
    Fox, Donald A.
    Martin, James F.
    Zwaka, Thomas P.
    Dickinson, Mary E.
    CELL REPORTS, 2016, 14 (07): : 1684 - 1697
  • [5] The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise tRNA structure and mitochondrial translation
    Kleiber, Nicole
    Lemus-Diaz, Nicolas
    Stiller, Carina
    Heinrichs, Marleen
    Mai, Mandy Mong-Quyen
    Hackert, Philipp
    Richter-Dennerlein, Ricarda
    Hoebartner, Claudia
    Bohnsack, Katherine E.
    Bohnsack, Markus T.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity
    Sirey, Tamara M.
    Roberts, Kenny
    Haerty, Wilfried
    Bedoya-Reina, Oscar
    Rogatti-Granados, Sebastian
    Tan, Jennifer Y.
    Li, Nick
    Heather, Lisa C.
    Carter, Roderick N.
    Cooper, Sarah
    Finch, Andrew J.
    Wills, Jimi
    Morton, Nicholas M.
    Marques, Ana Claudia
    Ponting, Chris P.
    ELIFE, 2019, 8
  • [7] KDM5-mediated transcriptional activation of ribosomal protein genes alters translation efficiency to regulate mitochondrial metabolism in neurons
    Yheskel, Matanel
    Hatch, Hayden A. M.
    Pedrosa, Erika
    Terry, Bethany K.
    Siebels, Aubrey A.
    Zheng, Xiang Yu
    Blok, Laura E. R.
    Fenckova, Michaela
    Sidoli, Simone
    Schenck, Annette
    Zheng, Deyou
    Lachman, Herbert M.
    Secombe, Julie
    NUCLEIC ACIDS RESEARCH, 2024, 52 (11) : 6201 - 6219
  • [8] Phylogenetic analysis of the Prionini (Coleoptera: Cerambycidae: Prioninae) from China based on mitochondrial ribosomal RNA genes and Cytochrome oxidase I gene
    Feng, Bo
    Chen, Li
    E, Yan-Li
    Zheng, Kai-Di
    ZOOTAXA, 2010, (2487) : 1 - 18
  • [9] Kinetoplast DNA-encoded ribosomal protein S12 A possible functional link between mitochondrial RNA editing and translation in Trypanosoma brucei
    Aphasizheva, Inna
    Maslov, Dmitri A.
    Aphasizhev, Ruslan
    RNA BIOLOGY, 2013, 10 (11) : 1679 - 1688
  • [10] RNA PROCESSING FACTOR 5 is required for efficient 5 cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana
    Hauler, Aron
    Jonietz, Christian
    Stoll, Birgit
    Stoll, Katrin
    Braun, Hans-Peter
    Binder, Stefan
    PLANT JOURNAL, 2013, 74 (04) : 593 - 604