Microwave Sintering of Lunar Regolith Simulant for Manufacturing Building Elements

被引:0
作者
Kim, Young-Jae [1 ]
Ryu, Byung-Hyun [1 ]
Jin, Hyun Woo [1 ]
Lee, Jangguen [1 ]
Shin, Hyu-Soung [2 ]
机构
[1] Korea Inst Civil Engn & Bldg Technol, Dept Future Technol & Convergence Res, Extreme Engn Res Ctr, Goyang Si, Gyeonggi Do, South Korea
[2] Korea Inst Civil Engn & Bldg Technol, Dept Future Technol & Convergence Res, Goyang Si, Gyeonggi Do, South Korea
来源
EARTH AND SPACE 2021: SPACE EXPLORATION, UTILIZATION, ENGINEERING, AND CONSTRUCTION IN EXTREME ENVIRONMENTS | 2021年
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Development of in-situ resource utilization (ISRU) method to construct space habitats and infrastructure on the lunar surface is required for supporting sustainable space exploration. In this respect, the lunar regolith can be an appropriate construction material, and the solidification process is essential for the manufacture of construction materials using lunar regolith. Meanwhile, the microwave process is regarded as an appropriate construction technology considering construction time and area, and energy efficiency on the lunar surface with environmental constraints. In this study, sintering of lunar regolith simulant (KLS-1) was performed by microwave radiation at a frequency of 2.45 GHz. The microstructural analysis of the sintered lunar regolith simulant has been investigated in detail using scanning electron microscopy (SEM). In addition, mechanical properties of the sintered lunar regolith were also evaluated by measuring compressive strength. The results of microstructural analysis and mechanical strength evaluation indicate that the microwave sintering method can be an appropriate ISRU method for manufacturing construction materials on the lunar surface.
引用
收藏
页码:985 / 991
页数:7
相关论文
共 50 条
[41]   Plasma processing of lunar regolith simulant for diverse applications [J].
Schofield, Elizabeth C. ;
Sen, Subhayu ;
O'Dell, J. Scott .
SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM STAIF 2008, 2008, 969 :170-+
[42]   In-situ resource utilisation manufacturing of optically transparent glass from lunar regolith simulant [J].
Juergen Schleppi ;
Geoffrey Bromiley ;
Nic Odling ;
Nick S. Bennett .
Journal of Materials Science, 2021, 56 :12132-12153
[43]   Model tests on flow slide of lunar regolith simulant [J].
Hu Zheng ;
Yu Huang .
Environmental Earth Sciences, 2015, 73 :4853-4859
[44]   Manufacturing Dense Thick Films of Lunar Regolith Simulant EAC-1 at Room Temperature [J].
Nieke, Philipp ;
Kita, Jaroslaw ;
Haeming, Marc ;
Moos, Ralf .
MATERIALS, 2019, 12 (03)
[45]   Measurement of Dust Charging on a Lunar Regolith Simulant Surface [J].
Ding, Ning ;
Wang, Joseph ;
Polansky, John .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2013, 41 (12) :3498-3504
[46]   Recovery rate prediction in lunar regolith simulant drilling [J].
Quan, Qiquan ;
Chen, Chongbin ;
Deng, Zongquan ;
Tang, Junyue ;
Jiang, Shengyuan .
ACTA ASTRONAUTICA, 2017, 133 :121-127
[47]   Model tests on flow slide of lunar regolith simulant [J].
Zheng, Hu ;
Huang, Yu .
ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (08) :4853-4859
[48]   A structural assessment of unrefined sintered lunar regolith simulant [J].
Indyk, Stephen J. ;
Benaroya, Haym .
ACTA ASTRONAUTICA, 2017, 140 :517-536
[49]   Boosting the Mechanical and Thermal Properties of CUG-1A Lunar Regolith Simulant by Spark Plasma Sintering [J].
Liu, Yiwei ;
Zhang, Xian ;
Chen, Xiong ;
Wang, Chao ;
Yu, Yaolun ;
Jia, Yi ;
Yao, Wei .
CRYSTALS, 2024, 14 (12)
[50]   Thermal properties of lunar regolith simulant melting specimen [J].
Kost, Philipp-Marius ;
Linke, Stefan ;
Gundlach, Bastian ;
Lethuillier, Anthony ;
Baasch, Julian ;
Stoll, Enrico ;
Blum, Juergen .
ACTA ASTRONAUTICA, 2021, 187 :429-437