Some s-numbers of an integral operator of Hardy type in Banach function spaces

被引:0
作者
Edmunds, David [1 ]
Gogatishvili, Amiran [2 ]
Kopaliani, Tengiz [3 ]
Samashvili, Nino [3 ]
机构
[1] Univ Sussex, Dept Math, Pevensey 2,North South Rd, Brighton BN1 9QH, E Sussex, England
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
[3] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, Univ St 2, GE-0143 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Hardy type operators; Banach function spaces; s-numbers; Compact linear operators; APPROXIMATION NUMBERS; WIDTHS;
D O I
10.1016/j.jat.2016.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let s(n)(T) denote the nth approximation, isomorphism, Gelfand, Kolmogorov or Bernstein number of the Hardy-type integral operator T given by T f(x) = v(x) integral(x)(a) u(t) f(t)dt, x is an element of (a, b) (-infinity < a < b < +infinity) and mapping a Banach function space E to itself. We investigate some geometrical properties of E for which C-1 integral(b)(a) u(x)v(x)dx <= lim(n ->infinity) inf ns(n) (T) <= lim(n ->infinity)sup ns(n)(T) <= C-2 integral(b)(a) u(x)v(x)dx under appropriate conditions on it and v. The constants C-1, C-2 > 0 depend only on the space E. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 97
页数:22
相关论文
共 24 条
[1]  
[Anonymous], 1993, T MAT I STEKLOV
[2]  
[Anonymous], VARIABLE LEBESGUE SP
[3]  
Bennett C., 1988, PURE APPL MATH, V129
[4]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[5]   Bernstein widths of Hardy-type operators in a non-homogeneous case [J].
Edmunds, D. E. ;
Lang, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) :1060-1076
[6]   Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case [J].
Edmunds, D. E. ;
Lang, J. .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (07) :727-742
[7]   Some s-numbers of an integral operator of Hardy type on Lp(•) spaces [J].
Edmunds, D. E. ;
Lang, J. ;
Nekvinda, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (01) :219-242
[8]  
Edmunds D.E., 2014, HARDY OPERATORS FUNC
[9]  
Edmunds D. E., 2014, Differential Operators on Spaces of Variable Integrability
[10]  
Edmunds DE, 1997, STUD MATH, V124, P59