Modeling the speciation and biogeochemistry of iron at the Bermuda Atlantic Time-series Study site -: art. no. GB1019

被引:41
作者
Weber, L [1 ]
Völker, C
Schartau, M
Wolf-Gladrow, DA
机构
[1] Univ Kiel, Leibniz Inst Meereswissensch, Kiel, Germany
[2] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany
关键词
D O I
10.1029/2004GB002340
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
By means of numerical modeling, we analyze the cycling of iron between its various physical ( dissolved, colloidal, particulate) and chemical ( redox state and organic complexation) forms in the upper mixed layer. With our proposed model it is possible to obtain a first quantitative assessment of how this cycling influences iron uptake by phytoplankton and its loss via particle export. The model is forced with observed dust deposition rates, mixed layer depths, and solar radiation at the site of the Bermuda Atlantic Time- series Study ( BATS). It contains an objectively optimized ecosystem model which yields results close to the observational data from BATS that has been used for the data- assimilation procedure. It is shown that the mixed layer cycle strongly influences the cycling of iron between its various forms. This is mainly due to the light dependency of photoreductive processes, and to the seasonality of primary production. The daily photochemical cycle is driven mainly by the production of superoxide, and its amplitude depends on the concentration and speciation of dissolved copper. Model results are almost insensitive to the dominant form of dissolved iron within dust deposition, and also to the form of iron that is taken up directly during algal growth. In our model solutions, the role of the colloidal pumping mechanism depends strongly on assumptions on the colloid aggregation and photoreduction rate.
引用
收藏
页码:1 / 23
页数:26
相关论文
共 112 条
[1]   THE INFLUENCE OF AQUEOUS IRON CHEMISTRY ON THE UPTAKE OF IRON BY THE COASTAL DIATOM THALASSIOSIRA-WEISSFLOGII [J].
ANDERSON, MA ;
MOREL, FMM .
LIMNOLOGY AND OCEANOGRAPHY, 1982, 27 (05) :789-813
[2]   Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition [J].
Arimoto, R .
EARTH-SCIENCE REVIEWS, 2001, 54 (1-3) :29-42
[3]   An optimization-based model of iron-light-ammonium colimitation of nitrate uptake and phytoplankton growth [J].
Armstrong, RA .
LIMNOLOGY AND OCEANOGRAPHY, 1999, 44 (06) :1436-1446
[4]   An ecosystem model of the global ocean including Fe, Si, P colimitations [J].
Aumont, O ;
Maier-Reimer, E ;
Blain, S ;
Monfray, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (02)
[5]   SCAVENGING RESIDENCE TIMES OF TRACE-METALS AND SURFACE-CHEMISTRY OF SINKING PARTICLES IN THE DEEP OCEAN [J].
BALISTRIERI, L ;
BREWER, PG ;
MURRAY, JW .
DEEP-SEA RESEARCH PART A-OCEANOGRAPHIC RESEARCH PAPERS, 1981, 28 (02) :101-121
[6]   Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups [J].
Barbeau, K ;
Rue, EL ;
Trick, CG ;
Bruland, KT ;
Butler, A .
LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (03) :1069-1078
[7]   Laboratory and field studies of colloidal iron oxide dissolution as mediated by phagotrophy and photolysis [J].
Barbeau, K ;
Moffett, JW .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (04) :827-835
[8]   Role of protozoan grazing in relieving iron limitation of phytoplankton [J].
Barbeau, K ;
Moffett, JW ;
Caron, DA ;
Croot, PL ;
Erdner, DL .
NATURE, 1996, 380 (6569) :61-64
[9]   Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands [J].
Barbeau, K ;
Rue, EL ;
Bruland, KW ;
Butler, A .
NATURE, 2001, 413 (6854) :409-413
[10]   SCAVENGING OF THORIUM ISOTOPES BY COLLOIDS IN SEAWATER OF THE GULF OF MEXICO [J].
BASKARAN, M ;
SANTSCHI, PH ;
BENOIT, G ;
HONEYMAN, BD .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (09) :3375-3388