Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers

被引:16
作者
Hale, Lucy L. [1 ]
Harris, C. Thomas [2 ,3 ]
Luk, Ting Shan [2 ,3 ]
Addamane, Sadhvikas J. [2 ,3 ]
Reno, John L. [2 ,3 ]
Brener, Igal [2 ,3 ]
Mitrofanov, Oleg [1 ,2 ]
机构
[1] UCL, Elect & Elect Engn, London WC1E 7JE, England
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
[3] Sandia Natl Labs, Albuquerque, NM 87123 USA
基金
英国工程与自然科学研究理事会;
关键词
RADIATION POWER; GENERATION; ANTENNAS;
D O I
10.1364/OL.427798
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with sub-picosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 mu W-three orders of magnitude lower than gating powers used for conventional PCA detectors. We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements. (C) 2021 Optical Society of America
引用
收藏
页码:3159 / 3162
页数:4
相关论文
共 33 条
[1]   Theory of metasurface based perfect absorbers [J].
Alaee, Rasoul ;
Albooyeh, Mohammad ;
Rockstuhl, Carsten .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (50)
[2]   Electric field correlation measurements on the electromagnetic vacuum state [J].
Benea-Chelmus, Ileana-Cristina ;
Settembrini, Francesca Fabiana ;
Scalari, Giacomo ;
Faist, Jerome .
NATURE, 2019, 568 (7751) :202-+
[3]   Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes [J].
Berry, C. W. ;
Wang, N. ;
Hashemi, M. R. ;
Unlu, M. ;
Jarrahi, M. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Resonant cavities for efficient LT-GaAs photoconductors operating at λ = 1550 nm [J].
Billet, M. ;
Latzel, P. ;
Pavanello, F. ;
Ducournau, G. ;
Lampin, J. -F. ;
Peytavit, E. .
APL PHOTONICS, 2016, 1 (07)
[5]   Review of terahertz photoconductive antenna technology [J].
Burford, Nathan M. ;
El-Shenawee, Magda O. .
OPTICAL ENGINEERING, 2017, 56 (01)
[6]  
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/nphoton.2013.151, 10.1038/NPHOTON.2013.151]
[7]   SATURATION PROPERTIES OF LARGE-APERTURE PHOTOCONDUCTING ANTENNAS [J].
DARROW, JT ;
ZHANG, XC ;
MORSE, JD .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (06) :1607-1618
[8]  
Elayan H., 2018, INT C ADV COMM TECHN
[9]   Plasmonic Antireflection Coating for Photoconductive Terahertz Generation [J].
Fesharaki, Faezeh ;
Jooshesh, Afshin ;
Bahrami-Yekta, Vahid ;
Mahtab, Mahsa ;
Tiedje, Tom ;
Darcie, Thomas E. ;
Gordon, Reuven .
ACS PHOTONICS, 2017, 4 (06) :1350-1354
[10]   Efficient Three-Dimensional Photonic-Plasmonic Photoconductive Switches for Picosecond THz Pulses [J].
Georgiou, Giorgos ;
Geffroy, Clement ;
Bauerle, Christopher ;
Roux, Jean-Francois .
ACS PHOTONICS, 2020, 7 (06) :1444-1451