共 69 条
Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study
被引:36
作者:
Jacobson, Melanie H.
[1
]
Wu, Yinxiang
[2
]
Liu, Mengling
[1
,3
]
Kannan, Kurunthachalam
[1
]
Li, Adela Jing
[1
]
Robinson, Morgan
[1
]
Warady, Bradley A.
[4
]
Furth, Susan
[5
]
Trachtman, Howard
[6
]
Trasande, Leonardo
[1
,2
,3
,7
,8
]
机构:
[1] NYU, Langone Med Ctr, Dept Pediat, Div Environm Pediat, New York, NY USA
[2] NYU, Langone Med Ctr, Dept Populat Hlth, New York, NY 10016 USA
[3] NYU, Langone Med Ctr, Dept Environm Med, New York, NY 10016 USA
[4] Childrens Mercy Kansas City, Dept Pediat, Div Nephrol, Kansas City, MO USA
[5] Childrens Hosp Philadelphia, Dept Pediat, Div Nephrol, Philadelphia, PA 19104 USA
[6] NYU, Langone Med Ctr, Dept Pediat, Div Nephrol, New York, NY 10016 USA
[7] NYU, Wagner Sch Publ Serv, New York, NY 10016 USA
[8] NYU, Coll Global Publ Hlth, New York, NY 10016 USA
基金:
美国国家卫生研究院;
关键词:
Pesticides;
Chronic kidney disease;
Renal function;
Children;
GELATINASE-ASSOCIATED LIPOCALIN;
GLOMERULAR-FILTRATION-RATE;
INJURY MOLECULE-1 KIM-1;
OXIDATIVE STRESS;
ENVIRONMENTAL CHEMICALS;
OXIDANT STRESS;
EXPOSURE;
ASSOCIATION;
URINE;
CKD;
D O I:
10.1016/j.envint.2021.106597
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Background: Growing evidence suggests that exposure to environmental chemicals, such as pesticides, impacts renal function and chronic kidney disease (CKD). However, it is not clear if pesticides may affect CKD progression and no studies exist in children. Objectives: The objective of this study was to examine associations between serially measured urinary OP pesticide metabolites and clinical and laboratory measures of kidney function over time among children with CKD. Methods: This study used data on 618 participants enrolled in the CKD in Children study (CKiD), a cohort study of pediatric CKD patients from the US and Canada. Children were followed over an average of 3.0 years (standard deviation (SD) = 1.6) between 2005 and 2015. In serially collected urine samples over time, six nonspecific dialkyl phosphate (DAP) metabolites of OP pesticides were measured. Biomarkers of tubular injury (kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)) and oxidant stress (8-hydroxy-2'-deoxyguanosine (8-OHdG) and F-2-isoprostane) were determined in the same specimens. Estimated glomerular filtration rate (eGFR), proteinuria, and blood pressure were assessed annually. Results: DAPs were associated with increased KIM-1 and 8-OHdG throughout follow-up. A standard deviation increase in Sdiethyl metabolites was associated with increases of 11.9% (95% Confidence Interval (CI): 4.8%, 19.4%) and 13.2% (95% CI: 9.3%, 17.2%) in KIM-1 and 8-OHdG over time, respectively. DAPs were associated with lower eGFR at baseline and higher eGFR over subsequent years. Conclusions: These findings provide preliminary evidence suggesting that urinary DAP metabolites are associated with subclinical kidney injury among children with CKD, which may signal the potential for clinical events to manifest in the future. The results from this study are significant from both a clinical and public health perspective, given that OP pesticide exposure is a modifiable risk factor.
引用
收藏
页数:10
相关论文