Solving the non-isentropic Navier-Stokes equations in odd space dimensions: The Green function method

被引:18
作者
Du, Linglong [1 ]
Wu, Zhigang [1 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
LARGE-TIME BEHAVIOR; BOLTZMANN-EQUATION; ASYMPTOTIC STABILITY; CONVERGENCE-RATES; POISSON EQUATIONS; EULER EQUATIONS; DIFFUSION WAVES; MOTION; MULTIDIMENSIONS; DECAY;
D O I
10.1063/1.5005915
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the wave structure of the solution for the compressible Navier-Stokes equations in both one space dimension and three space dimensions. First, we give the pointwise estimate on the Green function for the linearized system by dividing the physical domain into two parts, which are the finite Mach number region and outside finite Mach number region. We use long-wave short-wave decomposition and a weighted energy estimate method in each region separately. The Green function provides a complete picture of the wave pattern, with explicit leading terms. Then with the help of the Duhamel principle, we give the pointwise estimate of the solution for the nonlinear problems (1.1) and (1.2). Specially, we find that the decay rate in L-p( R-3) (2 < p <= infinity) for the energy ! <(omega)over tilde> is faster than those for the density (rho) over tilde and the momentum (m) over tilde. Published by AIP Publishing.
引用
收藏
页数:38
相关论文
共 43 条
[1]   THE MILNE AND KRAMERS PROBLEMS FOR THE BOLTZMANN-EQUATION OF A HARD-SPHERE GAS [J].
BARDOS, C ;
CAFLISCH, RE ;
NICOLAENKO, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (03) :323-352
[2]   On the theory of Botzmann's integrodifferential equation [J].
Carleman, T .
ACTA MATHEMATICA, 1933, 60 (01) :91-146
[3]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[4]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[5]   Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves [J].
Hoff, D ;
Zumbrun, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (04) :597-614
[6]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[7]   Asymptotic Stability of Combination of Viscous Contact Wave with Rarefaction Waves for One-Dimensional Compressible Navier-Stokes System [J].
Huang, Feimin ;
Li, Jing ;
Matsumura, Akitaka .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) :89-116
[8]   Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations [J].
Huang, FM ;
Matsumura, A ;
Xin, ZP .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (01) :55-77
[9]   CAUCHY-PROBLEM FOR THE EQUATIONS OF GASDYNAMICS WITH VISCOSITY [J].
KANEL, YI .
SIBERIAN MATHEMATICAL JOURNAL, 1979, 20 (02) :208-218
[10]   GLOBAL-SOLUTIONS TO THE INITIAL-VALUE PROBLEM FOR THE EQUATIONS OF ONE-DIMENSIONAL MOTION OF VISCOUS POLYTROPIC GASES [J].
KAWASHIMA, S ;
NISHIDA, T .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1981, 21 (04) :825-837