A theoretical model for the cantilever motion in contact-resonance atomic force microscopy and its application to phase calibration in piezoresponse force and electrochemical strain microscopy

被引:18
|
作者
Bradler, Stephan [1 ]
Kachel, Stefan Renato [1 ]
Schirmeisen, Andre [2 ]
Roling, Bernhard [1 ]
机构
[1] Univ Marburg, Dept Chem, Hans Meerwein Str 4, D-35032 Marburg, Germany
[2] Univ Giessen, Inst Appl Phys, Heinrich Buff Ring 16, D-35392 Giessen, Germany
关键词
NANOSCALE;
D O I
10.1063/1.4964942
中图分类号
O59 [应用物理学];
学科分类号
摘要
Contact-resonance scanning probe techniques are frequently used for characterizing the mechanical sample properties via atomic force acoustic/ultrasonic microscopy as well as for detecting sample displacement via piezoresponse force microscopy (PFM) and via electrochemical strain microscopy (ESM). For a better understanding of the measurement principle and for a quantification of the signals, a theoretical description of the cantilever motion is necessary. Here, we present a comprehensive model from which the cantilever motion can be calculated numerically. Compared to previous models, our model takes into account a sample tilt and a position-dependent electrostatic load acting on the cantilever. We demonstrate a phase calibration technique for PFM and ESM measurements, which allows us to determine the absolute excitation phase of the signal with an uncertainty of only 2 degrees for an amplification factor of 100. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Intermittent contact resonance atomic force microscopy
    Stan, Gheorghe
    Gates, Richard S.
    NANOTECHNOLOGY, 2014, 25 (24)
  • [12] On the effect of local sample slope during modulus measurements by contact-resonance atomic force microscopy
    Heinze, K.
    Arnould, O.
    Delenne, J-Y
    Lullien-Pellerin, V
    Ramonda, M.
    George, M.
    ULTRAMICROSCOPY, 2018, 194 : 78 - 88
  • [13] On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy
    Passeri, D.
    Rossi, M.
    Vlassak, J. J.
    ULTRAMICROSCOPY, 2013, 128 : 32 - 41
  • [14] Piezoresponse force microscopy imaging and its correlation with cantilever spring constant and frequency
    Solis Canto, O.
    Murillo-Bracamontes, E. A.
    Gervacio-Arciniega, J. J.
    Toledo-Solano, M.
    Torres-Miranda, G.
    Cruz-Valeriano, E.
    Chu, Y. H.
    Palomino-Ovando, M. A.
    Enriquez-Flores, C. I.
    Mendoza, M. E.
    Hmok, H'Linh
    Cruz, M. P.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (08)
  • [15] Nanoscale characterization of natural fibers and their composites using contact-resonance force microscopy
    Nair, Sandeep S.
    Wang, Siqun
    Hurley, Donna C.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (05) : 624 - 631
  • [16] Nonlinear contact resonance spectroscopy in atomic force microscopy
    Rupp, Daniel
    Rabe, Ute
    Hirsekorn, Sigrun
    Arnold, Walter
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (22) : 7136 - 7145
  • [17] Vanishing Cantilever Calibration Error with Magic Ratio Atomic Force Microscopy
    Sheridan, Richard J.
    Collinson, David W.
    Brinson, L. Catherine
    ADVANCED THEORY AND SIMULATIONS, 2020, 3 (08)
  • [18] Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy
    Wang, Fei
    Zhao, Xuezeng
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (04):
  • [19] CONTACT STIFFNESS CALIBRATION PLATFORM FOR NANOMECHANICAL PROPERTY MEASUREMENTS WITH CONTACT RESONANCE ATOMIC FORCE MICROSCOPY
    Rosenberger, M. R.
    Chen, S.
    Prater, C. B.
    King, W. P.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1235 - 1238
  • [20] Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy
    Rosenberger, Matthew R.
    Chen, Sihan
    Prater, Craig B.
    King, William P.
    NANOTECHNOLOGY, 2017, 28 (04)