A theoretical model for the cantilever motion in contact-resonance atomic force microscopy and its application to phase calibration in piezoresponse force and electrochemical strain microscopy

被引:18
作者
Bradler, Stephan [1 ]
Kachel, Stefan Renato [1 ]
Schirmeisen, Andre [2 ]
Roling, Bernhard [1 ]
机构
[1] Univ Marburg, Dept Chem, Hans Meerwein Str 4, D-35032 Marburg, Germany
[2] Univ Giessen, Inst Appl Phys, Heinrich Buff Ring 16, D-35392 Giessen, Germany
关键词
NANOSCALE;
D O I
10.1063/1.4964942
中图分类号
O59 [应用物理学];
学科分类号
摘要
Contact-resonance scanning probe techniques are frequently used for characterizing the mechanical sample properties via atomic force acoustic/ultrasonic microscopy as well as for detecting sample displacement via piezoresponse force microscopy (PFM) and via electrochemical strain microscopy (ESM). For a better understanding of the measurement principle and for a quantification of the signals, a theoretical description of the cantilever motion is necessary. Here, we present a comprehensive model from which the cantilever motion can be calculated numerically. Compared to previous models, our model takes into account a sample tilt and a position-dependent electrostatic load acting on the cantilever. We demonstrate a phase calibration technique for PFM and ESM measurements, which allows us to determine the absolute excitation phase of the signal with an uncertainty of only 2 degrees for an amplification factor of 100. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[2]   Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy [J].
Balke, Nina ;
Jesse, Stephen ;
Yu, Pu ;
Carmichael, Ben ;
Kalinin, Sergei V. ;
Tselev, Alexander .
NANOTECHNOLOGY, 2016, 27 (42)
[3]   Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy [J].
Balke, Nina ;
Maksymovych, Petro ;
Jesse, Stephen ;
Herklotz, Andreas ;
Tselev, Alexander ;
Eom, Chang-Beom ;
Kravchenko, Ivan I. ;
Yu, Pu ;
Kalinin, Sergei V. .
ACS NANO, 2015, 9 (06) :6484-6492
[4]   Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity [J].
Balke, Nina ;
Maksymovych, Petro ;
Jesse, Stephen ;
Kravchenko, Ivan I. ;
Li, Qian ;
Kalinin, Sergei V. .
ACS NANO, 2014, 8 (10) :10229-10236
[5]   MEASURING THE NANOMECHANICAL PROPERTIES AND SURFACE FORCES OF MATERIALS USING AN ATOMIC FORCE MICROSCOPE [J].
BURNHAM, NA ;
COLTON, RJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (04) :2906-2913
[6]   Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy [J].
Chen, Qian Nataly ;
Adler, Stuart B. ;
Li, Jiangyu .
APPLIED PHYSICS LETTERS, 2014, 105 (20)
[7]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[8]   Local Probing of Ferroelectric and Ferroelastic Switching through Stress-Mediated Piezoelectric Spectroscopy [J].
Edwards, David ;
Brewer, Steven ;
Cao, Ye ;
Jesse, Stephen ;
Chen, Long-Qing ;
Kalinin, Sergei V. ;
Kumar, Amit ;
Bassiri-Gharb, Nazanin .
ADVANCED MATERIALS INTERFACES, 2016, 3 (07)
[9]   Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM [J].
Gannepalli, A. ;
Yablon, D. G. ;
Tsou, A. H. ;
Proksch, R. .
NANOTECHNOLOGY, 2011, 22 (35)
[10]   Scanning force microscopy: Application to nanoscale studies of ferroelectric domains [J].
Gruverman, A ;
Auciello, O ;
Tokumoto, H .
INTEGRATED FERROELECTRICS, 1998, 19 (1-4) :49-83