Not all GKK τ-matrices are stable

被引:6
作者
Holtz, O [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1016/S0024-3795(99)00002-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hermitian positive definite, totally positive, and nonsingular M-matrices enjoy many common properties, in particular: (A) positivity of all principal miners, (B) weak sign symmetry, (C) eigenvalue monotonicity, (D) positive stability. The class of GKK matrices is defined by properties (A) and (B), whereas the class of nonsingular tau-matrices by (A) and (C). It was conjectured that: (A), (B) double right arrow (D) [D. Carlson, J. Res. Nat. Bur. Standards Sect. B 78 (1974) 1-2], (A), (C) double right arrow (D) [G.M. Engel and H. Schneider, Linear and Multilinear Algebra 4 (1976) 155-176], (A), (B) double right arrow a property stronger than (D) [R. Varga, Numerical Methods in Linear Algebra, 1978, pp. 5-15], (A), (B), (C) double right arrow (D) [D. Hershkowitz, Linear Algebra Appl. 171 (1992) 161-186]. We describe a class of unstable GKK tau-matrices, thus disproving all four conjectures. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 9 条
[1]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[2]  
[Anonymous], OSCILLATION MATRICES
[3]   WEAKLY SIGN-SYMMETRIC MATRICES AND SOME DETERMINANTAL INEQUALITIES [J].
CARLSON, D .
COLLOQUIUM MATHEMATICUM, 1967, 17 (01) :123-&
[4]   CLASS OF POSITIVE STABLE MATRICES [J].
CARLSON, D .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1974, B 78 (01) :1-2
[5]  
ENGEL GM, 1976, LINEAR MULTILINEAR A, V4, P155
[6]   RECENT DIRECTIONS IN MATRIX STABILITY [J].
HERSHKOWITZ, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 171 :161-186
[7]   NOTES ON OMEGA-MATRIX AND TAU-MATRIX [J].
HERSHKOWITZ, D ;
BERMAN, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :169-183
[8]  
MEHMANN V, 1984, LINEAR MULTILINEAR A, V16, P101
[9]  
VARGA R, 1978, NUMERICAL METHODS LI, P5