Covariant mutually unbiased bases

被引:4
作者
Carmeli, Claudio [1 ]
Schultz, Jussi [2 ,3 ]
Toigo, Alessandro [2 ,4 ]
机构
[1] Univ Genoa, DIME, Via Magliotto 2, I-17100 Savona, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo La Vinci 32, I-20133 Milan, Italy
[3] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turku, Finland
[4] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
Mutually unbiased bases; finite phase-space; finite Heisenberg group; finite symplectic group; FINITE HARMONIC-OSCILLATOR; QUANTUM-SYSTEMS; REPRESENTATIONS; CONSTRUCTION; DIMENSIONS; MATRICES;
D O I
10.1142/S0129055X16500094
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The connection between maximal sets of mutually unbiased bases (MUBs) in a prime-power dimensional Hilbert space and finite phase-space geometries is well known. In this article, we classify MUBs according to their degree of covariance with respect to the natural symmetries of a finite phase-space, which are the group of its affine symplectic transformations. We prove that there exist maximal sets of MUBs that are covariant with respect to the full group only in odd prime-power dimensional spaces, and in this case, their equivalence class is actually unique. Despite this limitation, we show that in dimension 2(r) covariance can still be achieved by restricting to proper subgroups of the symplectic group, that constitute the finite analogues of the oscillator group. For these subgroups, we explicitly construct the unitary operators yielding the covariance.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Song, Yi-yang
    Zhang, Gui-jun
    Xu, Ling-shan
    Tao, Yuan-hong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1777 - 1787
  • [32] Construction of Mutually Unbiased Bases Using Mutually Orthogonal Latin Squares
    Yi-yang Song
    Gui-jun Zhang
    Ling-shan Xu
    Yuan-hong Tao
    International Journal of Theoretical Physics, 2020, 59 : 1777 - 1787
  • [33] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Cd ⊗ Cd′
    Nan, Hua
    Tao, Yuan-Hong
    Li, Lin-Song
    Zhang, Jun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (03) : 927 - 932
  • [34] SU2 Nonstandard Bases: Case of Mutually Unbiased Bases
    Albouy, Olivier
    Kibler, Maurice R.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [35] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in ℂd ⊗ ℂd′
    Hua Nan
    Yuan-Hong Tao
    Lin-Song Li
    Jun Zhang
    International Journal of Theoretical Physics, 2015, 54 : 927 - 932
  • [36] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Ya-Jing Zhang
    Hui Zhao
    Naihuan Jing
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2017, 56 : 3425 - 3430
  • [37] CONSTRUCTING MUTUALLY UNBIASED BASES FROM UNEXTENDIBLE MAXIMALLY ENTANGLED BASES
    Zhao, Hui
    Zhang, Lin
    Fei, Shao-Ming
    Jing, Naihuan
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (01) : 105 - 118
  • [38] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Zhang, Ya-Jing
    Zhao, Hui
    Jing, Naihuan
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3425 - 3430
  • [39] On properties of Karlsson Hadamards and sets of mutually unbiased bases in dimension six
    Maxwell, Andrew S.
    Brierley, Stephen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 : 296 - 306
  • [40] Construction of orthogonal extraordinary supersquares and mutually unbiased bases
    Cheng XiaoYa
    Shang Yun
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (11)