Covariant mutually unbiased bases

被引:4
|
作者
Carmeli, Claudio [1 ]
Schultz, Jussi [2 ,3 ]
Toigo, Alessandro [2 ,4 ]
机构
[1] Univ Genoa, DIME, Via Magliotto 2, I-17100 Savona, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo La Vinci 32, I-20133 Milan, Italy
[3] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turku, Finland
[4] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
Mutually unbiased bases; finite phase-space; finite Heisenberg group; finite symplectic group; FINITE HARMONIC-OSCILLATOR; QUANTUM-SYSTEMS; REPRESENTATIONS; CONSTRUCTION; DIMENSIONS; MATRICES;
D O I
10.1142/S0129055X16500094
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The connection between maximal sets of mutually unbiased bases (MUBs) in a prime-power dimensional Hilbert space and finite phase-space geometries is well known. In this article, we classify MUBs according to their degree of covariance with respect to the natural symmetries of a finite phase-space, which are the group of its affine symplectic transformations. We prove that there exist maximal sets of MUBs that are covariant with respect to the full group only in odd prime-power dimensional spaces, and in this case, their equivalence class is actually unique. Despite this limitation, we show that in dimension 2(r) covariance can still be achieved by restricting to proper subgroups of the symplectic group, that constitute the finite analogues of the oscillator group. For these subgroups, we explicitly construct the unitary operators yielding the covariance.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Mutually unbiased bases
    Chaturvedi, S
    PRAMANA-JOURNAL OF PHYSICS, 2002, 59 (02): : 345 - 350
  • [2] ON MUTUALLY UNBIASED BASES
    Durt, Thomas
    Englert, Berthold-Georg
    Bengtsson, Ingemar
    Zyczkowski, Karol
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (04) : 535 - 640
  • [3] THE CORRESPONDENCE BETWEEN MUTUALLY UNBIASED BASES AND MUTUALLY ORTHOGONAL EXTRAORDINARY SUPERSQUARES
    Ghiu, Iulia
    Ghiu, Cristian
    REPORTS ON MATHEMATICAL PHYSICS, 2014, 73 (01) : 49 - 63
  • [4] Mutually unbiased bases
    S Chaturvedi
    Pramana, 2002, 59 : 345 - 350
  • [5] Orbits of mutually unbiased bases
    Blanchfield, Kate
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (13)
  • [6] Equiangular Vectors Approach to Mutually Unbiased Bases
    Kibler, Maurice R.
    ENTROPY, 2013, 15 (05) : 1726 - 1737
  • [7] The limitations of nice mutually unbiased bases
    Aschbacher, Michael
    Childs, Andrew M.
    Wocjan, Pawel
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (02) : 111 - 123
  • [8] The limitations of nice mutually unbiased bases
    Michael Aschbacher
    Andrew M. Childs
    Paweł Wocjan
    Journal of Algebraic Combinatorics, 2007, 25 : 111 - 123
  • [9] Mutually unbiased bases and bound entanglement
    Hiesmayr, Beatrix C.
    Loffler, Wolfgang
    PHYSICA SCRIPTA, 2014, T160
  • [10] Quantum coherence in mutually unbiased bases
    Wang, Yao-Kun
    Ge, Li-Zhu
    Tao, Yuan-Hong
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)