Dynamical Mean Field Studies of Infinite Layer Nickelates: Physics Results and Methodological Implications

被引:40
作者
Chen, Hanghui [1 ,2 ]
Hampel, Alexander [3 ]
Karp, Jonathan [4 ]
Lechermann, Frank [5 ]
Millis, Andrew J. [3 ,6 ]
机构
[1] NYU Shanghai, NYU ECNU Inst Phys, Shanghai, Peoples R China
[2] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
[3] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[5] European XFEL, Schenefeld, Germany
[6] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
nickelates; correlated electron physics; downfolding; dynamical mean field theory; density functional theory; quantum embedding; ELECTRONIC-STRUCTURE; SELF-INTERACTION; SUPERCONDUCTIVITY;
D O I
10.3389/fphy.2022.835942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article summarizes recent work on the many-body (beyond density functional theory) electronic structure of layered rare-earth nickelates, both in the context of the materials themselves and in comparison to the high-temperature superconducting (high-T ( c )) layered copper-oxide compounds. It aims to outline the current state of our understanding of layered nickelates and to show how the analysis of these fascinating materials can shed light on fundamental questions in modern electronic structure theory. A prime focus is determining how the interacting physics defined over a wide energy range can be estimated and "downfolded " into a low energy theory that would describe the relevant degrees of freedom on the & SIM; 0.5 eV scale and that could be solved to determine superconducting and spin and charge density wave phase boundaries, temperature dependent resistivities, and dynamical susceptibilities.
引用
收藏
页数:20
相关论文
共 116 条
[11]   Electronic Structure Trends Across the Rare-Earth Series in Superconducting Infinite-Layer Nickelates [J].
Been, Emily ;
Lee, Wei-Sheng ;
Hwang, Harold Y. ;
Cui, Yi ;
Zaanen, Jan ;
Devereaux, Thomas ;
Moritz, Brian ;
Jia, Chunjing .
PHYSICAL REVIEW X, 2021, 11 (01)
[12]   Stability and electronic properties of LaNiO2/SrTiO3heterostructures [J].
Bernardini, F. ;
Cano, A. .
JOURNAL OF PHYSICS-MATERIALS, 2020, 3 (03)
[13]   Infinite-layer fluoro-nickelates asd 9model materials [J].
Bernardini, F. ;
Olevano, V ;
Blase, X. ;
Cano, A. .
JOURNAL OF PHYSICS-MATERIALS, 2020, 3 (03)
[14]   Similarities and Differences between LaNiO2 and CaCuO2 and Implications for Superconductivity [J].
Botana, A. S. ;
Norman, M. R. .
PHYSICAL REVIEW X, 2020, 10 (01)
[15]   DFT in a nutshell [J].
Burke, Kieron ;
Wagner, Lucas O. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (02) :96-101
[16]   MAGNETIC-STRUCTURE OF V2O3 IN THE INSULATING PHASE [J].
CASTELLANI, C ;
NATOLI, CR ;
RANNINGER, J .
PHYSICAL REVIEW B, 1978, 18 (09) :4945-4966
[17]   Fluctuation-frustrated flat band instabilities in NdNiO2 [J].
Choi, Mi-Young ;
Pickett, Warren E. ;
Lee, Kwan-Woo .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[18]   Role of 4f states in infinite-layer NdNiO2 [J].
Choi, Mi-Young ;
Lee, Kwan-Woo ;
Pickett, Warren E. .
PHYSICAL REVIEW B, 2020, 101 (02)
[19]   Electronic theory for scanning tunneling microscopy spectra in infinite-layer nickelate superconductors [J].
Choubey, Peayush ;
Eremin, Ilya M. .
PHYSICAL REVIEW B, 2021, 104 (14)
[20]   Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems [J].
Filippetti, A ;
Spaldin, NA .
PHYSICAL REVIEW B, 2003, 67 (12) :15