Computational design of small transcription activating RNAs for versatile and dynamic gene regulation

被引:100
作者
Chappell, James [1 ]
Westbrook, Alexandra [2 ]
Verosloff, Matthew [3 ]
Lucks, Julius B. [1 ,3 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Cornell Univ, Robert F Smith Sch Chem & Biomol Engn, 113 Ho Plaza, Ithaca, NY 14583 USA
[3] Northwestern Univ, Interdisciplinary Biol Sci Grad Program, 2204 Tech Dr, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
CONTROL PROTEIN EXPRESSION; RIBOSOME BINDING-SITES; SYNTHETIC BIOLOGY; AUTOMATED DESIGN; NETWORKS; RIBOSWITCHES; TRANSLATION; TERMINATION; SYSTEMS; CELLS;
D O I
10.1038/s41467-017-01082-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A longstanding goal of synthetic biology has been the programmable control of cellular functions. Central to this is the creation of versatile regulatory toolsets that allow for programmable control of gene expression. Of the many regulatory molecules available, RNA regulators offer the intriguing possibility of de novo design-allowing for the bottom-up molecular-level design of genetic control systems. Here we present a computational design approach for the creation of a bacterial regulator called Small Transcription Activating RNAs (STARs) and create a library of high-performing and orthogonal STARs that achieve up to similar to 9000-fold gene activation. We demonstrate the versatility of these STARs-from acting synergistically with existing constitutive and inducible regulators, to reprogramming cellular phenotypes and controlling multigene metabolic pathway expression. Finally, we combine these new STARs with themselves and CRISPRi transcriptional repressors to deliver new types of RNA-based genetic circuitry that allow for sophisticated and temporal control of gene expression.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[2]   Tuning Response Curves for Synthetic Biology [J].
Ang, Jordan ;
Harris, Edouard ;
Hussey, Brendan J. ;
Kil, Richard ;
McMillen, David R. .
ACS SYNTHETIC BIOLOGY, 2013, 2 (10) :547-567
[3]  
Ausländer S, 2014, NAT METHODS, V11, P1154, DOI [10.1038/NMETH.3136, 10.1038/nmeth.3136]
[4]   Automated physics-based design of synthetic riboswitches from diverse RNA aptamers [J].
Borujeni, Amin Espah ;
Mishler, Dennis M. ;
Wang, Jingzhi ;
Huso, Walker ;
Salis, Howard M. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (01) :1-13
[5]   Measurement and modeling of intrinsic transcription terminators [J].
Cambray, Guillaume ;
Guimaraes, Joao C. ;
Mutalik, Vivek K. ;
Lam, Colin ;
Quynh-Anh Mai ;
Thimmaiah, Tim ;
Carothers, James M. ;
Arkin, Adam P. ;
Endy, Drew .
NUCLEIC ACIDS RESEARCH, 2013, 41 (09) :5139-5148
[6]   Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression [J].
Carothers, James M. ;
Goler, Jonathan A. ;
Juminaga, Darmawi ;
Keasling, Jay D. .
SCIENCE, 2011, 334 (6063) :1716-1719
[7]   A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future [J].
Chappell, James ;
Watters, Kyle E. ;
Takahashi, Melissa K. ;
Lucks, Julius B. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 28 :47-56
[8]   Creating small transcription activating RNAs [J].
Chappell, James ;
Takahashi, Melissa K. ;
Lucks, Julius B. .
NATURE CHEMICAL BIOLOGY, 2015, 11 (03) :214-U165
[9]   The centrality of RNA for engineering gene expression [J].
Chappell, James ;
Takahashi, Melissa K. ;
Meyer, Sarai ;
Loughrey, David ;
Watters, Kyle E. ;
Lucks, Julius .
BIOTECHNOLOGY JOURNAL, 2013, 8 (12) :1379-1395
[10]  
Chen YJ, 2013, NAT METHODS, V10, P659, DOI [10.1038/nmeth.2515, 10.1038/NMETH.2515]