Instability of the solitary wave solutions for the generalized derivative nonlinear Schrodinger equation in the critical frequency case

被引:6
作者
Guo, Zihua [1 ]
Ning, Cui [2 ]
Wu, Yifei [3 ]
机构
[1] Monash Univ, Sch Math, Clayton, Vic 3800, Australia
[2] Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou 510521, Guangdong, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; INITIAL-VALUE PROBLEM; ORBITAL STABILITY; EXISTENCE;
D O I
10.4310/MRL.2020.v27.n2.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stability theory of solitary wave solutions for the generalized derivative nonlinear Schrodinger equation i partial derivative(t)u + partial derivative(2)(x)u + i vertical bar u vertical bar(2 sigma) partial derivative(x)u = 0. The equation has a two-parameter family of solitary wave solutions of the form phi(omega, c)(x) = phi(omega, c)(x) exp{i c/2x - i/2 sigma + 2 integral(x)(-infinity) phi(2 sigma)(omega,c)(y)dy}. Here phi(omega, c) is some real-valued function. It was proved in [29] that the solitary wave solutions are stable if -2 root omega < c < 2z(0) root omega), and unstable if 2z(0) root omega < c < 2 root omega for some z(0) is an element of (0, 1). We prove the instability at the borderline case c = 2z(0)root omega for 1 < sigma < 2, improving the previous results in [7] where 7/6 < sigma < 2.
引用
收藏
页码:339 / 375
页数:37
相关论文
共 46 条
[1]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[2]  
Cher Y., ARXIV160202381
[3]   Stability of solitary waves for derivative nonlinear Schrodinger equation [J].
Colin, Mathieu ;
Ohta, Masahito .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :753-764
[4]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[5]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[6]   INSTABILITY OF SOLITARY WAVES FOR A GENERALIZED DERIVATIVE NONLINEAR SCHRODINGER EQUATION IN A BORDERLINE CASE [J].
Fukaya, Noriyoshi .
KODAI MATHEMATICAL JOURNAL, 2017, 40 (03) :450-467
[7]   A SUFFICIENT CONDITION FOR GLOBAL EXISTENCE OF SOLUTIONS TO A GENERALIZED DERIVATIVE NONLINEAR SCHRODINGER EQUATION [J].
Fukaya, Noriyoshi ;
Hayashi, Masayuki ;
Inui, Takahisa .
ANALYSIS & PDE, 2017, 10 (05) :1149-1167
[8]   Low regularity local well-posedness of the derivative nonlinear Schrodinger equation with periodic initial data [J].
Gruenrock, Axel ;
Herr, Sebastian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) :1890-1920
[9]  
Grünrock A, 2005, INT MATH RES NOTICES, V2005, P2525
[10]   ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR DERIVATIVE SCHRODINGER-EQUATION [J].
GUO, BL ;
WU, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (01) :35-55