The Cusp-Hopf bifurcation

被引:22
|
作者
Harlim, J. [1 ]
Langford, W. F. [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
Hopf bifurcation; cusp; codimension-three; bistability; bursting oscillations; PLANAR VECTOR-FIELDS; NORMAL FORMS; CLASSIFICATION; UNFOLDINGS;
D O I
10.1142/S0218127407018622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coalescence of a Hopf bifurcation with a codimension-two cusp bifurcation of equilibrium points yields a codimension-three bifurcation with rich dynamic behavior. This paper presents a comprehensive study of this cusp-Hopf bifurcation on the three-dimensional center manifold. It is based on truncated normal form equations, which have a phase-shift symmetry yielding a further reduction to a planar system. Bifurcation varieties and phase portraits are presented. The phenomena include all four cases that occur in the codimension-two fold-Hopf bifurcation, in addition to bistability involving equilibria, limit cycles or invariant tori, and a fold-heteroclinic bifurcation that leads to bursting oscillations. Uniqueness of the torus family is established locally. Numerical simulations confirm the prediction from the bifurcation analysis of bursting oscillations that are similar in appearance to those that occur in the electrical behavior of neurons and other physical systems.
引用
收藏
页码:2547 / 2570
页数:24
相关论文
共 50 条
  • [31] HOPF BIFURCATION FOR NONLINEAR SEMIGROUPS
    MARSDEN, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (03) : 537 - 541
  • [32] The monodromy in the Hamiltonian Hopf bifurcation
    Duistermaat, JJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (01): : 156 - 161
  • [33] Bifurcation in coupled Hopf oscillators
    Sterpu, Mihaela
    Rocsoreanu, Carmen
    MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 835 : 133 - +
  • [34] Hopf bifurcation on a square superlattice
    Dawes, JHP
    NONLINEARITY, 2001, 14 (03) : 491 - 511
  • [35] A postprocessing of Hopf bifurcation points
    Janovská, D
    Janovsky, V
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 502 - 509
  • [36] OPTIMIZATION OF HOPF BIFURCATION POINTS
    Boulle, Nicolas
    Farrell, Patrick E.
    Rognes, Marie E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : B390 - B411
  • [37] The monodromy in the Hamiltonian Hopf bifurcation
    J. J. Duistermaat
    Zeitschrift für angewandte Mathematik und Physik, 1998, 49 : 156 - 161
  • [38] Hopf bifurcation of a chemostat model
    Qu, Rongning
    Li, Xiaofang
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3541 - 3552
  • [39] On certain generalizations of the Hopf bifurcation
    L. Aguirre
    J. H. Arredondo
    R. López
    P. Seibert
    Annali di Matematica Pura ed Applicata, 2007, 186 : 509 - 524
  • [40] Hamiltonian Hopf Bifurcation with Symmetry
    Pascal Chossat
    Juan-Pablo Ortega
    Tudor S. Ratiu
    Archive for Rational Mechanics and Analysis, 2002, 163 : 1 - 33