The Cusp-Hopf bifurcation

被引:22
|
作者
Harlim, J. [1 ]
Langford, W. F. [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
Hopf bifurcation; cusp; codimension-three; bistability; bursting oscillations; PLANAR VECTOR-FIELDS; NORMAL FORMS; CLASSIFICATION; UNFOLDINGS;
D O I
10.1142/S0218127407018622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coalescence of a Hopf bifurcation with a codimension-two cusp bifurcation of equilibrium points yields a codimension-three bifurcation with rich dynamic behavior. This paper presents a comprehensive study of this cusp-Hopf bifurcation on the three-dimensional center manifold. It is based on truncated normal form equations, which have a phase-shift symmetry yielding a further reduction to a planar system. Bifurcation varieties and phase portraits are presented. The phenomena include all four cases that occur in the codimension-two fold-Hopf bifurcation, in addition to bistability involving equilibria, limit cycles or invariant tori, and a fold-heteroclinic bifurcation that leads to bursting oscillations. Uniqueness of the torus family is established locally. Numerical simulations confirm the prediction from the bifurcation analysis of bursting oscillations that are similar in appearance to those that occur in the electrical behavior of neurons and other physical systems.
引用
收藏
页码:2547 / 2570
页数:24
相关论文
共 50 条
  • [21] Hopf bifurcation of a impact damper
    Zhao, WL
    Wang, LZ
    Xie, JH
    Luo, GW
    3RD INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 1998, : 437 - 440
  • [22] Measuring the criticality of a Hopf bifurcation
    Alexei Uteshev
    Tamás Kalmár-Nagy
    Nonlinear Dynamics, 2020, 101 : 2541 - 2549
  • [23] THE SINGULAR LIMIT OF A HOPF BIFURCATION
    Guckenheimer, John
    Osinga, Hinke M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (08) : 2805 - 2823
  • [24] Hopf bifurcation by frustrated drifts
    Zimmermann, W
    Schmitz, R
    PHYSICAL REVIEW E, 1996, 53 (02) : R1321 - R1324
  • [25] THE COMPLEX HOPF-BIFURCATION
    ZHAO, HZ
    CHINESE SCIENCE BULLETIN, 1991, 36 (13): : 1135 - 1136
  • [26] Measuring the criticality of a Hopf bifurcation
    Uteshev, Alexei
    Kalmar-Nagy, Tamas
    NONLINEAR DYNAMICS, 2020, 101 (04) : 2541 - 2549
  • [27] Stochastic Hopf bifurcation: An example
    SchenkHoppe, KR
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (05) : 685 - 692
  • [28] A model for the nonautonomous Hopf bifurcation
    Anagnostopoulou, V.
    Jaeger, T.
    Keller, G.
    NONLINEARITY, 2015, 28 (07) : 2587 - 2616
  • [29] Liouvillian dynamics of the Hopf bifurcation
    Gaspard, P.
    Tasaki, S.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II): : 1 - 056232
  • [30] SILNIKOV-HOPF BIFURCATION
    HIRSCHBERG, P
    KNOBLOCH, E
    PHYSICA D, 1993, 62 (1-4): : 202 - 216