The Cusp-Hopf bifurcation

被引:22
|
作者
Harlim, J. [1 ]
Langford, W. F. [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
Hopf bifurcation; cusp; codimension-three; bistability; bursting oscillations; PLANAR VECTOR-FIELDS; NORMAL FORMS; CLASSIFICATION; UNFOLDINGS;
D O I
10.1142/S0218127407018622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coalescence of a Hopf bifurcation with a codimension-two cusp bifurcation of equilibrium points yields a codimension-three bifurcation with rich dynamic behavior. This paper presents a comprehensive study of this cusp-Hopf bifurcation on the three-dimensional center manifold. It is based on truncated normal form equations, which have a phase-shift symmetry yielding a further reduction to a planar system. Bifurcation varieties and phase portraits are presented. The phenomena include all four cases that occur in the codimension-two fold-Hopf bifurcation, in addition to bistability involving equilibria, limit cycles or invariant tori, and a fold-heteroclinic bifurcation that leads to bursting oscillations. Uniqueness of the torus family is established locally. Numerical simulations confirm the prediction from the bifurcation analysis of bursting oscillations that are similar in appearance to those that occur in the electrical behavior of neurons and other physical systems.
引用
收藏
页码:2547 / 2570
页数:24
相关论文
共 50 条
  • [1] Bistability of equilibria and the 2-tori dynamics in an endogenous growth model undergoing the cusp-Hopf singularity
    Bella, Giovanni
    Mattana, Paolo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 : 185 - 201
  • [2] A SYSTEM WITH 3 LIMIT-CYCLES APPEARING IN A HOPF-BIFURCATION AND DYING IN A HOMOCLINIC BIFURCATION - THE CUSP OF ORDER-4
    LI, CZ
    ROUSSEAU, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (01) : 132 - 167
  • [3] HOPF-BIFURCATION AND THE HOPF FIBRATION
    FIELD, M
    SWIFT, JW
    NONLINEARITY, 1994, 7 (02) : 385 - 402
  • [4] Hopf Bifurcation, Hopf-Hopf Bifurcation, and Period-Doubling Bifurcation in a Four-Species Food Web
    Zhang, Huayong
    Kang, Ju
    Huang, Tousheng
    Cong, Xuebing
    Ma, Shengnan
    Huang, Hai
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [5] On a degenerate Hopf bifurcation
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
  • [6] THE COMPLEX HOPF BIFURCATION
    赵怀忠
    Chinese Science Bulletin, 1991, (13) : 1135 - 1136
  • [7] Hopf bifurcation on hemispheres
    Abreu, SMC
    Dias, APS
    NONLINEARITY, 2006, 19 (03) : 553 - 574
  • [8] Hopf bifurcation on a sphere
    Sigrist, Rachel
    NONLINEARITY, 2010, 23 (12) : 3199 - 3225
  • [9] On the Hopf bifurcation for flows
    Chaperon, M
    de Medrano, SL
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (11) : 833 - 838
  • [10] Unfolding the cusp-cusp bifurcation of planar endomorphisms
    Krauskopf, Bernd
    Osinga, Hinke M.
    Peckham, Bruce B.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02): : 403 - 440