Ammonia assisted low temperature growth of In2O3 (111) epitaxial films on c-sapphire substrates by chemical vapor deposition technique

被引:9
作者
Yadav, Santosh Kumar [1 ]
Das, Souvik [1 ]
Prasad, Nivedita [1 ]
Barick, Barun K. [1 ]
Arora, Simran [1 ]
Sutar, Dayanand S. [2 ]
Dhar, Subhabrata [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
[2] Indian Inst Technol, Cent Surface Analyt Facil, Mumbai 400076, Maharashtra, India
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2020年 / 38卷 / 03期
关键词
HIGH-ELECTRON-MOBILITY; THIN-FILMS; BAND-GAP; INDIUM; SPECTROSCOPY;
D O I
10.1116/6.0000038
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The authors report the growth of bixbyite In2O3 (111) epitaxial layers on c-plane sapphire substrates by a chemical vapor deposition route, in which growth takes place under the flow of oxygen and ammonia in a furnace. Indium metal is used as the source for indium. It has been found that In2O3 films with high epitaxial quality can be grown by optimizing the growth temperature and the flow rate of NH3. Ammonia plays a catalytic role in the growth process. At growth temperatures less than 550 degrees C, inclusion of a rhombohedral phase, which is known to be thermodynamically stable only at high pressure, has been detected in the film. X-ray photoelectron spectroscopy does not show the presence of nitrogen in these films. An x-ray diffraction study reveals a sharp increase of disorder in these films as the growth temperature increases beyond 550 degrees C. The bandgap of the material is also found to decrease with the increase of disorder.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Indium oxide-a transparent, wide-band gap semiconductor for (opto)electronic applications [J].
Bierwagen, Oliver .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (02)
[2]   The influence of Sn doping on the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy [J].
Bourlange, A. ;
Payne, D. J. ;
Palgrave, R. G. ;
Zhang, H. ;
Foord, J. S. ;
Egdell, R. G. ;
Jacobs, R. M. J. ;
Veal, T. D. ;
King, P. D. C. ;
McConville, C. F. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
[3]   Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy [J].
Bourlange, A. ;
Payne, D. J. ;
Palgrave, R. G. ;
Foord, J. S. ;
Egdell, R. G. ;
Jacobs, R. M. J. ;
Schertel, A. ;
Hutchison, J. L. ;
Dobson, P. J. .
THIN SOLID FILMS, 2009, 517 (15) :4286-4294
[4]   High mobility transparent conducting oxides for thin film solar cells [J].
Calnan, S. ;
Tiwari, A. N. .
THIN SOLID FILMS, 2010, 518 (07) :1839-1849
[5]   Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes [J].
Chen, Zimin ;
Zhuo, Yi ;
Tu, Wenbin ;
Ma, Xuejin ;
Pei, Yanli ;
Wang, Chengxin ;
Wang, Gang .
APPLIED PHYSICS LETTERS, 2017, 110 (24)
[6]   STRUCTURAL ASPECTS AND DEFECT CHEMISTRY IN IN2O3 [J].
DEWIT, JHW .
JOURNAL OF SOLID STATE CHEMISTRY, 1977, 20 (02) :143-148
[7]   Characterization of indium-tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: Effect of surface pretreatment conditions [J].
Donley, C ;
Dunphy, D ;
Paine, D ;
Carter, C ;
Nebesny, K ;
Lee, P ;
Alloway, D ;
Armstrong, NR .
LANGMUIR, 2002, 18 (02) :450-457
[8]   X-RAY PHOTOEMISSION SPECTROSCOPY STUDIES OF SN-DOPED INDIUM-OXIDE FILMS [J].
FAN, JCC ;
GOODENOUGH, JB .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (08) :3524-3531
[9]   Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes [J].
Gan, Jiayong ;
Lu, Xihong ;
Wu, Jingheng ;
Xie, Shilei ;
Zhai, Teng ;
Yu, Minghao ;
Zhang, Zishou ;
Mao, Yanchao ;
Wang, Shing Chi Ian ;
Shen, Yong ;
Tong, Yexiang .
SCIENTIFIC REPORTS, 2013, 3
[10]   Novel type of indium oxide thin films sputtering for opto-electronic applications [J].
Golan, G. ;
Axelevitch, A. ;
Gorenstein, B. ;
Peled, A. .
APPLIED SURFACE SCIENCE, 2007, 253 (15) :6608-6611