Existence of localized solutions in the parametrically driven and damped DNLS equation in high-dimensional lattices

被引:4
作者
Feng, Y
Qin, WX [1 ]
Zheng, ZG
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Nanjing Audit Univ, Dept Appl Math, Nanjing 210029, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.physleta.2005.07.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Instead of using the homoclinic orbit approach, which was commonly taken when studying the localized solutions of the discrete non-linear Schrodinger (DNLS) equation in one-dimensional lattices, we apply the continuation theorem to investigate the existence, stability, and spatial complexity of the localized solutions, including bright breathers, dark breathers, and antiphase breathers, of the parametrically driven and damped DNLS equation in high-dimensional lattices. In particular, we prove that the sufficient condition that the driving strength exceeds the damping constant is necessary for the system with weak coupling to possess localized solutions. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 28 条
[1]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[2]   Exponential localization of linear response in networks with exponentially decaying coupling [J].
Baesens, C ;
MacKay, RS .
NONLINEARITY, 1997, 10 (04) :931-940
[3]   Stable complexes of parametrically driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Zemlyanaya, EV .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2568-2571
[4]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[5]   TOPOGRAPHY OF ATTRACTORS OF THE PARAMETRICALLY DRIVEN NONLINEAR SCHRODINGER-EQUATION [J].
BONDILA, M ;
BARASHENKOV, IV ;
BOGDAN, MM .
PHYSICA D, 1995, 87 (1-4) :314-320
[6]   Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices [J].
Bountis, T ;
Capel, HW ;
Kollmann, M ;
Ross, JC ;
Bergamin, JM ;
van der Weele, JP .
PHYSICS LETTERS A, 2000, 268 (1-2) :50-60
[7]   Three-dimensional nonlinear lattices:: From oblique vortices and octupoles to discrete diamonds and vortex cubes -: art. no. 203901 [J].
Carretero-González, R ;
Kevrekidis, PG ;
Malomed, BA ;
Frantzeskakis, DJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[8]  
CHOW SN, 1996, RANDOM COMPUT DYN, V4, P109
[9]   Asymmetric dark solitons in nonlinear lattices [J].
Darmanyan, S ;
Kobyakov, A ;
Lederer, F .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 93 (02) :429-434
[10]  
Eilbeck J. C., 2003, Proceedings of the Third Conference: Localization & Energy Transfer in Nonlinear Systems, P44