Implementation and performance of FDPS: a framework for developing parallel particle simulation codes

被引:111
作者
Iwasawa, Masaki [1 ]
Tanikawa, Ataru [1 ,2 ]
Hosono, Natsuki [1 ]
Nitadori, Keigo [1 ]
Muranushi, Takayuki [1 ]
Makino, Junichiro [1 ,3 ,4 ]
机构
[1] RIKEN Adv Inst Computat Sci, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[2] Univ Tokyo, Dept Earth & Astron, Coll Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Kobe Univ, Grad Sch Sci, Dept Planetol, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
[4] Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
关键词
dark matter; Galaxy: evolution; methods: numerical; planets and satellites: formation; SPECIAL-PURPOSE COMPUTER; SIMD INSTRUCTION SET; N-BODY SIMULATION; TREE-CODE; HYDRODYNAMICS; DYNAMICS; GALAXIES; SYSTEMS; SPH;
D O I
10.1093/pasj/psw053
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N-2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 10(7)) to 300 ms (N = 10(9)). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
引用
收藏
页数:22
相关论文
共 53 条
[11]   The tree particle-mesh N-body gravity solver [J].
Bode, P ;
Ostriker, JP ;
Xu, GH .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 128 (02) :561-569
[12]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[13]  
Cameron A. G. W., 1976, P 7 LUN SCI C GEOCH, V120
[14]   Lunar-forming impacts: High-resolution SPH and AMR-CTH simulations [J].
Canup, R. M. ;
Barr, A. C. ;
Crawford, D. A. .
ICARUS, 2013, 222 (01) :200-219
[15]  
Case DA, 2015, AMBER
[16]   A very fast and momentum-conserving tree code [J].
Dehnen, W .
ASTROPHYSICAL JOURNAL, 2000, 536 (01) :L39-L42
[17]   Improving convergence in smoothed particle hydrodynamics simulations without pairing instability [J].
Dehnen, Walter ;
Aly, Hossam .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (02) :1068-1082
[18]   GOTPM: a parallel hybrid particle-mesh treecode [J].
Dubinski, J ;
Kim, J ;
Park, C ;
Humble, R .
NEW ASTRONOMY, 2004, 9 (02) :111-126
[19]  
Dubinski J, 1997, NEW ASTRON, V1, P133
[20]   THE DYNAMICS OF SPIRAL ARMS IN PURE STELLAR DISKS [J].
Fujii, M. S. ;
Baba, J. ;
Saitoh, T. R. ;
Makino, J. ;
Kokubo, E. ;
Wada, K. .
ASTROPHYSICAL JOURNAL, 2011, 730 (02)