Labeling Primary Nerve Stem Cells with Quantum Dots

被引:9
|
作者
Zhang, Jing [1 ]
Lv, Xiao-Jing [1 ]
Jia, Xing [1 ]
Deng, Yu-Lin [1 ]
Qing, Hong [1 ]
Xie, Hai-Yan [1 ]
机构
[1] Beijing Inst Technol, Sch Life Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Nerve Stem Cell; Quantum Dots; Labeling; Passive Loading; IN-VIVO; INTRACELLULAR DELIVERY; PROGENITOR-CELL; T-CELLS; TRACKING; FLUORESCENT; INHIBITION; SYMPORTER; NEURONS; PROBE;
D O I
10.1166/jnn.2011.5322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The primary nerve stem cells (NSCs) were labeled with the carboxyl QDs by passive loading. The studies on QDs' effect on the NSCs showed that with a proper concentration, QDs have little effect on NSCs growth and proliferation within a week, and the QDs did not affect either differentiation potential of NSCs or the protein expression of neuron and astrocyte derived from NSCs. The results suggested that this labeling method is appropriate for labeling studies in vitro. Combined with the unique optical properties of QDs, it is possibly to fulfill NSCs fate-tracking in vivo.
引用
收藏
页码:9536 / 9542
页数:7
相关论文
共 50 条
  • [31] Effective Labeling of Primary Somatic Stem Cells with BaTiO3 Nanocrystals for Second Harmonic Generation Imaging
    Sugiyama, Nami
    Sonay, Ali Y.
    Tussiwand, Roxanne
    Cohen, Bruce E.
    Pantazis, Periklis
    SMALL, 2018, 14 (08)
  • [32] Applications of Fluorescent Quantum Dots to Stem Cell Tracing In Vivo
    Lei, Yun
    Tang, Haiyang
    Feng, Meifu
    Zou, Bingsuo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (10) : 5726 - 5730
  • [33] Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking
    Costa, Clautina R. M.
    Feitosa, Matheus L. T.
    Bezerra, Dayseanny O.
    Carvalho, Yulla K. P.
    Olivindo, Rodrigo F. G.
    Fernando, Pablo B.
    Silva, Gustavo C.
    Silva, Mirna L. G.
    Ambrosio, Carlos E.
    Conde Junior, Airton M.
    Argolo Neto, Napoleao M.
    Costa Silva, Lais M.
    Carvalho, Maria A. M.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2017, 53 (04) : 363 - 370
  • [34] The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells
    Shang, Weihu
    Zhang, Xiaoyan
    Zhang, Mo
    Fan, Zetan
    Sun, Ying
    Han, Mei
    Fan, Louzhen
    NANOSCALE, 2014, 6 (11) : 5799 - 5806
  • [35] Quantum dots luminescent compounds with multimodal luminescence for fuel labeling
    Sagdeev, Dmitriy O.
    Shamilov, Radik R.
    Galyametdinov, Yuriy G.
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [36] Studies on labeling of papain with quantum dots synthesized in aqueous solution
    Lin, ZB
    Zhang, H
    Chen, QD
    Wan, Y
    Yang, B
    Su, XG
    Zhang, JH
    Jin, QH
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2003, 24 (04): : 609 - 611
  • [37] NTA•Ni2+-Functionalized Quantum Dots for VAMP2 Labeling in Live Cells
    Yu, Mi Kyung
    Lee, Suho
    Chang, Sunghoe
    Jon, Sangyong
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2010, 31 (06): : 1474 - 1478
  • [38] Synthesis of carbon nanohorns/chitosan/quantum dots nanocomposite and its applications in cells labeling and in vivo imaging
    Li, Jing
    He, Zhe
    Guo, Changrun
    Wang, Liping
    Xu, Shukun
    JOURNAL OF LUMINESCENCE, 2014, 145 : 74 - 80
  • [39] In Vivo Imaging Technology of Transplanted Stem Cells Using Quantum Dots for Regenerative Medicine
    Yukawa, Hiroshi
    Baba, Yoshinobu
    ANALYTICAL SCIENCES, 2018, 34 (05) : 525 - 532
  • [40] The regulation of the gap junction of human mesenchymal stem cells through the internalization of quantum dots
    Chang, Jui-Chih
    Hsu, Shan-hui
    Su, Hong-Lin
    BIOMATERIALS, 2009, 30 (10) : 1937 - 1946