Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural

被引:12
|
作者
Zuo, Xiaobin [1 ,2 ]
Venkitasubramanian, Padmesh [3 ]
Martin, Kevin J. [3 ]
Subramaniam, Bala [1 ,2 ,4 ]
机构
[1] Univ Kansas, Ctr Environmentally Beneficial Catalysis, Lawrence, KS 66047 USA
[2] Ottawa Univ, Sch Arts & Sci, Ottawa, KS 66067 USA
[3] Archer Daniels Midland ADM Co, Decatur, IL 62521 USA
[4] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA
基金
美国农业部;
关键词
2; 5-furandicarboxylic acid; 5-hydroxymethylfurfural; catalysis; oxidation; sustainable chemistry; P-XYLENE OXIDATION; CATALYTIC-OXIDATION; BIOMASS; CONVERSION; OPTIMIZATION; PURIFICATION; AUTOXIDATION; DEHYDRATION; CHEMISTRY; ZIRCONIUM;
D O I
10.1002/cssc.202102050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxidation of 5-hydroxymethylfurfural (HMF) produces value-added chemicals such as 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). In this work, FDCA production was achieved by oxidation of crude HMF solution containing around 45 % HMF and unwanted byproducts such as 5,5 '-[oxy-bis(methylene)]bis-2-furfural (HMF dimer) and polymers. At optimized reaction conditions similar to the Mid-Century process, homogeneous oxidation of the crude HMF (up to 20 wt% in the feed) by Co/Mn/Br catalyst in acetic acid solution produced FDCA at >95 % yield. The solid FDCA product contained <4000 ppm 5-formyl-2-furancarboxylic acid (FFCA). Such high yields were observed because the impurities in crude HMF were also converted to FDCA, as confirmed by the facile oxidation of HMF dimer to FDCA under reaction conditions. The successful demonstration of crude HMF as feed, obviating the need for HMF purification, suggests potential for cost-effectively producing FDCA in existing terephthalic plants.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism
    Chen, Chunlin
    Wang, Lingchen
    Zhu, Bin
    Zhou, Zhenqiang
    El-Hout, Soliman, I
    Yang, Jie
    Zhang, Jian
    JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 528 - 554
  • [2] 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural:Catalysts, processes and reaction mechanism
    Chunlin Chen
    Lingchen Wang
    Bin Zhu
    Zhenqiang Zhou
    Soliman I.El-Hout
    Jie Yang
    Jian Zhang
    Journal of Energy Chemistry, 2021, 54 (03) : 528 - 554
  • [3] A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Peng, Yani
    Qiu, Boya
    Ding, Shengzhe
    Hu, Min
    Zhang, Yuxin
    Jiao, Yilai
    Fan, Xiaolei
    Parlett, Christopher M. A.
    CHEMPLUSCHEM, 2024, 89 (01):
  • [4] Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Wei, Zange
    Li, Wenhao
    Yuan, Fang
    Sun, Weizhen
    Zhao, Ling
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (50) : 18352 - 18361
  • [5] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [6] NiFeCo wrinkled nanosheet electrode for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Chen, Bingkun
    Yang, Bowen
    Su, Yaqiong
    Hou, Qidong
    Smith Jr, Richard Lee
    Qi, Xinhua
    Guo, Haixin
    GREEN CHEMISTRY, 2025, 27 (07) : 2117 - 2129
  • [7] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China(Chemistry), 2017, 60 (07) : 950 - 957
  • [8] Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over CuO and NiO modified natural sourced hierarchical ZSM-5
    Herlina, Idra
    Krisnandi, Yuni Krisyuningsih
    Ridwan, Muhammad
    SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 47 : 75 - 82
  • [9] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China(Chemistry), 2017, (07) : 950 - 957
  • [10] Effect of Ag Addition to Au Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    de Boed, Ewoud J. J.
    Nolten, Hidde L.
    Masoud, Nazila
    Vogel, Robin
    Wang, Fei
    Xu, Zhuoran
    Doskocil, Eric J.
    Donoeva, Baira
    de Jongh, Petra E.
    CHEMCATCHEM, 2024, 16 (12)