Prediction of high-temperature polymer dielectrics using a Bayesian molecular design model

被引:8
作者
Liu, Di-Fan [1 ]
Feng, Qi-Kun [1 ]
Zhang, Yong-Xin [1 ]
Zhong, Shao-Long [1 ]
Dang, Zhi-Min [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
CHEMICAL LANGUAGE; DISCOVERY; DENSITY;
D O I
10.1063/5.0094746
中图分类号
O59 [应用物理学];
学科分类号
摘要
Machine learning has shown its great potential in the accelerated discovery of advanced materials in the field of computational molecular design. High-temperature polymer dielectrics are urgently required with the emerging applications of energy-storage dielectric film capacitors under high-temperature conditions. Here, we demonstrate the successful prediction of polymers with a high dielectric constant (e) and high glass transition temperature (T-g) using a Bayesian molecular design model. The model is trained on a joint data set containing 382 computed e values using density functional perturbation theory and experimentally measured T-g values of & SIM;7000 polymers to build relative quantitative structure-property relationships and identify the promising polymers with specific desired range of dielectric constant and glass transition temperature. From the hypothetical polymer candidates, ten promising polymers are proposed based on their predicted properties and synthetic accessibility score for high-temperature dielectric film capacitors' application. Moreover, 250k novel polymer structures are generated with the model to support future polymer informatics research. This work contributes to the successful prediction of high-temperature polymer dielectrics using machine learning models. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] High-temperature polymer dielectrics with superior capacitive energy storage performance
    Qin, Hongmei
    Song, Jinhui
    Liu, Man
    Zhang, Yibo
    Qin, Shiyu
    Chen, Hang
    Shen, Kangdi
    Wang, Shan
    Li, Qi
    Yang, Quanling
    Xiong, Chuanxi
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [2] Polymer dielectrics for high-temperature energy storage: Constructing carrier traps
    Zha, Jun -Wei
    Xiao, Mengyu
    Wan, Baoquan
    Wang, Xinmo
    Dang, Zhi-Min
    Chen, George
    PROGRESS IN MATERIALS SCIENCE, 2023, 140
  • [3] High-Temperature Polymer Composite Dielectrics: Energy Storage Performance, Large-Scale Preparation, and Device Design
    Li, Xin
    Hu, Penghao
    Jiang, Jianyong
    Pan, Jiayu
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2025, 37 (09)
  • [4] Research progress of polymer based dielectrics for high-temperature capacitor energy storage
    Dong Jiu-Feng
    Deng Xing-Lei
    Niu Yu-Juan
    Pan Zi-Zhao
    Wang Hong
    ACTA PHYSICA SINICA, 2020, 69 (21)
  • [5] Flexible High-Temperature Polymer Dielectrics Induced by Ultraviolet Radiation for High Efficient Energy Storage
    Pei, Jia-Yao
    Zhu, Jing
    Yin, Li-Juan
    Zhao, Yu
    Yang, Minhao
    Zhong, Shao-Long
    Feng, Qi-Kun
    Dang, Zhi-Min
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)
  • [6] Surface Strengthening of Polymer Composite Dielectrics for Superior High-Temperature Capacitive Energy Storage
    Wang, Zepeng
    Zhao, Yanlong
    Yang, Minhao
    Yan, Huarui
    Xu, Chao
    Tian, Bobo
    Zhang, Chong
    Xie, Qing
    Dang, Zhi-Min
    ADVANCED ENERGY MATERIALS, 2025,
  • [7] Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage
    Wang, Rui
    Zhu, Yujie
    Fu, Jing
    Yang, Mingcong
    Ran, Zhaoyu
    Li, Junluo
    Li, Manxi
    Hu, Jun
    He, Jinliang
    Li, Qi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Improvement of high-temperature energy storage performance in polymer dielectrics by nanofillers with defect spinel structure
    Fu, Jing
    Yang, Mingcong
    Wang, Rui
    Cheng, Sang
    Huang, Xiaoyan
    Wang, Shaojie
    Li, Junluo
    Li, Manxi
    He, Jinliang
    Li, Qi
    MATERIALS TODAY ENERGY, 2022, 29
  • [9] Rationally designed high-temperature polymer dielectrics for capacitive energy storage: An experimental and computational alliance
    Aklujkar, Pritish S.
    Gurnani, Rishi
    Rout, Pragati
    Khomane, Ashish R.
    Mutegi, Irene
    Desai, Mohak
    Pollock, Amy
    Toribio, John M.
    Hao, Jing
    Cao, Yang
    Ramprasad, Rampi
    Sotzing, Gregory
    PROGRESS IN POLYMER SCIENCE, 2025, 161
  • [10] Unifying and Suppressing Conduction Losses of Polymer Dielectrics for Superior High-Temperature Capacitive Energy Storage
    Yang, Minhao
    Wang, Zepeng
    Zhao, Yanlong
    Liu, Zeren
    Pang, Hui
    Dang, Zhi-Min
    ADVANCED MATERIALS, 2023,