Biomaterial-assisted scalable cell production for cell therapy

被引:44
作者
Chen, Ruoyu [1 ]
Li, Ling [1 ]
Feng, Lu [1 ]
Luo, Yixue [1 ]
Xu, Mingen [2 ]
Leong, Kam W. [3 ]
Yao, Rui [1 ]
机构
[1] Tsinghua Univ, Biomfg & Rapid Forming Technol Key Lab Beijing, Key Lab Adv Mat Proc Technol, Minist Educ,Dept Mech Engn, Beijing 100084, Peoples R China
[2] Hangzhou Dianzi Univ, Key Lab Med Informat & 3D Bioprinting Zhejiang Pr, Hangzhou 310018, Zhejiang, Peoples R China
[3] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
Biomaterials; Cell therapy; Large-scale production; Cell amplification; Stem cell therapy; HUMAN HEMATOPOIETIC STEM; UMBILICAL-CORD BLOOD; EX-VIVO EXPANSION; BONE-MARROW; PROGENITOR CELLS; MATRIX STIFFNESS; PERIPHERAL-BLOOD; OSTEOGENIC DIFFERENTIATION; ENDOTHELIAL-CELLS; ADIPOSE-TISSUE;
D O I
10.1016/j.biomaterials.2019.119627
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cell therapy, the treatment of diseases using living cells, offers a promising clinical approach to treating refractory diseases. The global market for cell therapy is growing rapidly, and there is an increasing demand for automated methods that can produce large quantities of high quality therapeutic cells. Biomaterials can be used during cell production to establish a biomimetic microenvironment that promotes cell adhesion and proliferation while maintaining target cell genotype and phenotype. Here we review recent progress and emerging techniques in biomaterial-assisted cell production. The increasing use of auxiliary biomaterials and automated production methods provides an opportunity to improve quality control and increase production efficiency using standardized GMP-compliant procedures.
引用
收藏
页数:16
相关论文
共 186 条
[1]   Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies [J].
Abbasalizadeh, Saeed ;
Baharvand, Hossein .
BIOTECHNOLOGY ADVANCES, 2013, 31 (08) :1600-1623
[2]   Manufacturing Cell Therapies Using Engineered Biomaterials [J].
Abdeen, Amr A. ;
Saha, Krishanu .
TRENDS IN BIOTECHNOLOGY, 2017, 35 (10) :971-982
[3]   Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+cells [J].
Abrahamsen, JF ;
Bakken, AM ;
Bruserud, O .
TRANSFUSION, 2002, 42 (12) :1573-1580
[4]  
Aguado BA, 2012, TISSUE ENG PT A, V18, P806, DOI [10.1089/ten.tea.2011.0391, 10.1089/ten.TEA.2011.0391]
[5]   Synthesis of poly(β-amino ester)s optimized for highly effective gene delivery [J].
Akinc, A ;
Anderson, DG ;
Lynn, DM ;
Langer, R .
BIOCONJUGATE CHEMISTRY, 2003, 14 (05) :979-988
[6]   Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control [J].
Akiyama, Y ;
Kikuchi, A ;
Yamato, M ;
Okano, T .
LANGMUIR, 2004, 20 (13) :5506-5511
[7]   Efficient Suspension Bioreactor Expansion of Murine Embryonic Stem Cells on Microcarriers in Serum-Free Medium [J].
Alfred, Roz ;
Radford, Jaret ;
Fan, Jessica ;
Boon, Kathryn ;
Krawetz, Roman ;
Rancourt, Derrick ;
Kallos, Michael S. .
BIOTECHNOLOGY PROGRESS, 2011, 27 (03) :811-823
[8]   Targeted nonviral gene therapy in prostate cancer [J].
Altwaijry, Najla ;
Somani, Sukrut ;
Dufes, Christine .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 :5753-5767
[9]   Tethering of Epidermal Growth Factor (EGF) to Beta Tricalcium Phosphate (βTCP) via Fusion to a High Affinity, Multimeric βTCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors [J].
Alvarez, Luis M. ;
Rivera, Jaime J. ;
Stockdale, Linda ;
Saini, Sunil ;
Lee, Richard T. ;
Griffith, Linda G. .
PLOS ONE, 2015, 10 (06)
[10]   Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel [J].
Andrejecsk, Jillian W. ;
Cui, Jiajia ;
Chang, William G. ;
Devalliere, Julie ;
Pober, Jordan S. ;
Saltzman, W. Mark .
BIOMATERIALS, 2013, 34 (35) :8899-8908