Thermal behavior analysis of lithium-ion capacitors at transient high discharge rates

被引:17
作者
Zhou, Wei [1 ,2 ]
Liu, Zhien [2 ]
An, Yabin [1 ,4 ]
Luo, Maji [2 ]
Zhang, Xiaohu [1 ,4 ]
Song, Shuang [1 ,3 ]
Li, Chen [1 ,4 ]
Liu, Zehui [1 ,3 ]
Gao, Yinghui [1 ]
Zhang, Haitao [5 ]
Zhang, Xiong [1 ,3 ,4 ]
Sun, Xianzhong [1 ,2 ,3 ,4 ]
Ma, Yanwei [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Inst Elect Engn & Adv Electromagnet Drive Technol, Jinan 250013, Peoples R China
[5] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion capacitors; High -rate discharging; Intermittent current method; Temperature rise; Heat generation; HEAT-GENERATION; HIGH-POWER; ENERGY-STORAGE; BATTERY; CARBON; TEMPERATURE; PERFORMANCE; VALIDATION; CATHODE; HYBRID;
D O I
10.1016/j.est.2022.105208
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As one of the prospective high-rate energy storage devices, lithium-ion capacitors (LICs) typically incorporate non-Faradaic cathodes with Faradaic pre-lithiated anodes. LICs that deliver power density at high-rate dis-charging process can be accompanied by overheating problems which result in capacity deterioration and life-time reduction. Therefore, it is essential to conduct a comprehensive analysis of the heat generation of LICs. The thermal behavior of pouch lithium-ion capacitors in this work is systematically investigated at transient high -rates from 1C to 550C. The heat transfer mechanisms of each part in the overall thermal behavior are quantified in detail during discharging processes. As the discharge rate increases, the temperature curve shows an upward parabolic trend at the end of discharge, with a maximum temperature of 33.68 C at 200C.The pro-portion of irreversible heat to total heat generation is close to 80 % at 550C, but the temperature at the end of discharge decreases owing to the reduced discharge time. The actually measured temperature rise is compared with the one calculated using the intermittent current method, the voltage-current (V-I) characteristic method and the alternating current impedance method. It can be found that the intermittent current method calculated temperature trends are in good agreement with the measured values better than other methods, because the polarization internal resistance is significantly related to the discharge time interval. These results would provide the basis for further development of a thermal model of the cell, in order to rationally design the cooling system to avoid overheating and degradation of the cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Coupled effects of charge-discharge cycles and rates on the mechanical behavior of electrodes in lithium-ion batteries
    Ji, Yingping
    Chen, Xiaoping
    Wang, Tao
    Ji, Hongbo
    Zhang, Yu
    Yuan, Quan
    Li, Ling
    JOURNAL OF ENERGY STORAGE, 2020, 30
  • [22] A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors
    Karimi, Danial
    Behi, Hamidreza
    Hosen, Md Sazzad
    Jaguemont, Joris
    Berecibar, Maitane
    Van Mierlo, Joeri
    APPLIED THERMAL ENGINEERING, 2021, 185
  • [23] THERMAL BEHAVIOR OF LITHIUM-ION BATTERIES: AGING, HEAT GENERATION, THERMAL MANAGEMENT AND FAILURE
    Galatro, Daniela
    Al-Zareer, Maan
    Da Silva, Carlos
    Romero, David A.
    Amon, Cristina H.
    FRONTIERS IN HEAT AND MASS TRANSFER, 2020, 14 : 1 - 18
  • [24] A design-based predictive model for lithium-ion capacitors
    Moye, D. G.
    Moss, P. L.
    Chen, X. J.
    Cao, W. J.
    Foo, S. Y.
    JOURNAL OF POWER SOURCES, 2019, 435
  • [25] Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors
    Jiang, Jiang-Min
    Li, Zhi-Wei
    Zhang, Zhao-Ting
    Wang, Shi-Jing
    Xu, Hai
    Zheng, Xin-Ran
    Chen, Ya-Xin
    Ju, Zhi-Cheng
    Dou, Hui
    Zhang, Xiao-Gang
    RARE METALS, 2022, 41 (10) : 3322 - 3335
  • [26] Degradation Behavior of Lithium-Ion Capacitors during Calendar Aging
    El Ghossein, Nagham
    Sari, Ali
    Venet, Pascal
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 142 - 146
  • [27] Recent Advances in Hybrid Lithium-Ion Capacitors: Materials and Processes
    Zhao, Shasha
    Sun, Xianzhong
    Wang, Ningfeng
    Li, Chen
    An, Yabin
    Xu, Yanan
    Wang, Kai
    Zhang, Xiong
    Ma, Yanwei
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (24): : 11553 - 11570
  • [28] Energy Density Theory of Lithium-Ion Capacitors
    Zheng, Jim P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
  • [29] Analysis of lithium-ion battery thermal models inaccuracy caused by physical properties uncertainty
    Dong, Ti
    Wang, Yiwei
    Cao, Wenjiong
    Zhang, Weijiang
    Jiang, Fangming
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [30] Lithium-Ion Capacitor: Analysis of Thermal Behavior and Development of Three-Dimensional Thermal Model
    Berckmans, Gert
    Ronsmans, Jan
    Jaguemont, Joris
    Samba, Ahmadou
    Omar, Noshin
    Hegazy, Omar
    Soltani, Mahdi
    Firouz, Yousef
    van den Bossche, Peter
    Van Mierlo, Joeri
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2017, 14 (04)