BrC-MCDLM: breast Cancer detection using Multi-Channel deep learning model

被引:10
|
作者
Tembhurne, Jitendra, V [1 ]
Hazarika, Anupama [2 ]
Diwan, Tausif [1 ]
机构
[1] Indian Inst Informat Technol, Dept Comp Sci & Engn, Nagpur, Maharashtra, India
[2] Tezpur Univ, Dept Comp Sci & Engn, Tezpur, Assam, India
关键词
Breast cancer; Classification; Deep convolutional neural network; Multi-channel merging; DIAGNOSIS; BENIGN; IMAGES;
D O I
10.1007/s11042-021-11199-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer (BrC) is a lethal form of cancer which causes numerous deaths in women across the world. Generally, mammograms and histopathology biopsy images are recommended for early detection of BrC as they enable a more reliable prediction than just using mammograms. However, research indicates that even the most experienced dermatologists can detect BrC in early stage with an average accuracy of less than 80%. Over the years, researchers have made significant progress in the development of automated tools and techniques to assist radiologists or medical practitioners in BrC detection. Various machine learning and deep learning based architectures are extensively experimented on different publicly available datasets to improve the performance measures. There is further scope of improvements by extracting better representative features with deep architectural variants or ensembles techniques to minimize the misclassifications. Learnt parameters of any pretrained deep models may provide a better starting point for any other architectures using transfer learning technique. In this work, we propose computer-aided transfer learning based deep model as a binary classifier for breast cancer detection. Generally, deep learning architectures are sequential, following only a single channel for features' extraction and further classification. However, fused features extracted from multiple channels may better represent features qualitatively. The novelty of our approach is the use of multi-channel merging techniques for devising a dual-architecture ensemble. The models are trained and tested on the BreakHis dataset and an improvement in comparison with the state-of-the-arts is observed in various performance metrics. Among several combinations for ensemble architectures by utilizing various pretrained models, the Xception + InceptionV3 combination achieved an average accuracy of 97.5% for multi-channelled architecture, setting benchmarking results for further research in this direction.
引用
收藏
页码:31647 / 31670
页数:24
相关论文
共 50 条
  • [1] BrC-MCDLM: breast Cancer detection using Multi-Channel deep learning model
    Jitendra V. Tembhurne
    Anupama Hazarika
    Tausif Diwan
    Multimedia Tools and Applications, 2021, 80 : 31647 - 31670
  • [2] Mammography with deep learning for breast cancer detection
    Wang, Lulu
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [3] Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms
    Sahu, Adyasha
    Das, Pradeep Kumar
    Meher, Sukadev
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 114
  • [4] Feasible Detection of Breast Cancer Metastasis using a CNN-based Deep Learning Model
    Khan, Mohammad Badhruddouza
    Saha, Pranto Soumik
    Shahrior, Rahat
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [5] Anomaly Detection of Breast Cancer Using Deep Learning
    Ahad Alloqmani
    Yoosef B. Abushark
    Asif Irshad Khan
    Arabian Journal for Science and Engineering, 2023, 48 : 10977 - 11002
  • [6] Detection and Diagnosis of Breast Cancer Using Deep Learning
    Alahe, Mohammad Ashik
    Maniruzzaman, Md
    2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
  • [7] Anomaly Detection of Breast Cancer Using Deep Learning
    Alloqmani, Ahad
    Abushark, Yoosef B.
    Khan, Asif Irshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 10977 - 11002
  • [8] Multi-channel convolutional neural network architectures for thyroid cancer detection
    Zhang, Xinyu
    Lee, Vincent C. S.
    Rong, Jia
    Liu, Feng
    Kong, Haoyu
    PLOS ONE, 2022, 17 (01):
  • [9] Deep Learning for Detection of Fetal ECG from Multi-Channel Abdominal Leads
    Lo, Fang-Wen
    Tsai, Pei-Yun
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 1397 - 1401
  • [10] A New Hybrid Breast Cancer Diagnosis Model Using Deep Learning Model and ReliefF
    Burcak, Kadir Can
    Uguz, Harun
    TRAITEMENT DU SIGNAL, 2022, 39 (02) : 521 - 529