Solution for the fragment-size distribution in a crack-branching model of fragmentation

被引:28
|
作者
Kekalainen, P.
Astroem, J. A.
Timonen, J.
机构
[1] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland
[2] CSC IT Ctr Sci, FI-02101 Espoo, Finland
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevE.76.026112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is well established that rapidly propagating cracks in brittle material are unstable such that they generate side branches. It is also known that cracks are attracted by free surfaces, which means that they attract each other. This information is used here to formulate a generic model of fragmentation in which the small-size part of the fragment-size distribution results from merged crack branches in the damage zones along the paths of the propagating cracks. This model is solved under rather general assumptions for the fragment-size distribution. The model leads to a generic distribution S-gamma exp(-S/S-0) for fragment sizes S, where gamma=2d-1/d with d the Euclidean dimension, and S-0 is a material dependent parameter.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] EFFECTS OF STRESS-DISTRIBUTION ON CRACK-BRANCHING IN GLASS
    KISHIMOTO, K
    AOKI, S
    SAKATA, M
    ARCHIVES OF MECHANICS, 1981, 33 (06): : 947 - 956
  • [2] FRAGMENT-SIZE DISTRIBUTION IN DISINTEGRATION BY MAXIMUM-ENTROPY FORMALISM
    ENGLMAN, R
    RIVIER, N
    JAEGER, Z
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06): : 751 - 769
  • [3] Model development for fragment-size distribution based on upper-limit log-normal distribution
    Kim, J.
    No, H. C.
    NUCLEAR ENGINEERING AND DESIGN, 2019, 349 : 86 - 91
  • [4] Research on the fragment-size model for blasting in jointed rock mass
    Zhang, JC
    ROCK FRAGMENTATION BY BLASTING, 1996, : 19 - 24
  • [5] LOCAL BIMODAL FRAGMENT-SIZE DISTRIBUTION LAW IN EXPLOSIVE FRACTURING OF ROCKS
    ZAMYSHLIAEV, BV
    EVTEREV, LS
    LOBOREV, VM
    CHERNEIKIN, VA
    DOKLADY AKADEMII NAUK SSSR, 1987, 293 (02): : 326 - 329
  • [6] FRAGMENT-SIZE DISTRIBUTION IN DISINTEGRATION BY MAXIMUM-ENTROPY FORMALISM.
    Englman, R.
    Rivier, N.
    Jaeger, Z.
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1987, 56 (06): : 751 - 769
  • [7] MATHEMATICAL-MODEL OF CHANGES IN FRAGMENT-SIZE COMPOSITION DURING ORE MINING
    FADDEENKOV, NN
    BALAGUR, YA
    SOVIET MINING SCIENCE USSR, 1978, 14 (05): : 484 - 490
  • [8] Fragment-size prediction during dynamic fragmentation of shock-melted tin: Recovery experiments and modeling issues
    Signor, L.
    de Ressguier, T.
    Roy, G.
    Dragon, A.
    Llorca, F.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2007, PTS 1 AND 2, 2007, 955 : 593 - +
  • [9] Fragment Size Distribution in Dynamic Fragmentation: Geometric Probability Approach
    Elek, Predrag
    Jaramaz, Slobodan
    FME TRANSACTIONS, 2008, 36 (02): : 59 - 65
  • [10] Cell-free DNA fragment-size distribution analysis for non-invasive prenatal CNV prediction
    Arbabi, Aryan
    Rampasek, Ladislav
    Brudno, Michael
    BIOINFORMATICS, 2016, 32 (11) : 1662 - 1669