A note on ergodic transformations of self-similar Volterra Gaussian processes

被引:7
作者
Jost, Celine [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
关键词
Volterra Gaussian process; self-similar process; ergodic transformation; fractional Brownian motion;
D O I
10.1214/ECP.v12-1298
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra, i.e. of type X-t = integral(t)(0) z(X)(t, s) dW(s), t is an element of [0,infinity), where z(X) is a deterministic kernel and W is a standard Brownian motion.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 13 条
[1]  
[Anonymous], THEORY PROBABILITY I
[2]  
[Anonymous], 1993, TRANSLATIONS MATH MO
[3]  
DEHEUVELS P, 1982, STOCHASTIC PROCESSES, V13, P311
[4]  
Embrechts P, 2002, PRIN SER APPL MATH, P1
[5]  
Erdelyi A., 1954, Tables of Integral Transforms
[6]   STOCHASTIC AND MULTIPLE WIENER INTEGRALS FOR GAUSSIAN PROCESSES [J].
HUANG, ST ;
CAMBANIS, S .
ANNALS OF PROBABILITY, 1978, 6 (04) :585-614
[7]  
JEULIN T, 1990, SEM PROB STRASB, V24, P227
[8]  
JOST C, MEASURE PRESERVING T
[9]   An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions [J].
Norros, I ;
Valkeila, E ;
Virtamo, J .
BERNOULLI, 1999, 5 (04) :571-587
[10]   Explicit formulae for time-space Brownian chaos [J].
Peccati, G .
BERNOULLI, 2003, 9 (01) :25-48