Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation

被引:5
作者
Choi, Jin Hyuk [1 ]
Kim, Hyunsoo [2 ]
机构
[1] Kyung Hee Univ, Humanitas Coll, Yongin 17104, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
基金
新加坡国家研究基金会;
关键词
CDGSK equation; Painleve test; Hermite transformatiom; conformable fractional derivative; sub-equations method; ORDINARY DIFFERENTIAL-EQUATIONS; NONLINEAR EVOLUTION-EQUATIONS; LIE SYMMETRY ANALYSIS; CONSERVATION-LAWS; SYSTEM; CONNECTION;
D O I
10.3934/math.2021240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we test the intgrability of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation on the Painleve test and construct new Wick-type and nob-Wick-type versions of exact traveling wave solutions of the stochastic Wick-type fractional CDGSK equation by employing the Hermit transformation, the conformable fractional derivative and the sub-equations method. Moreover, we obtain exact traveling wave solutions of the fractional Sawada-Kotera (SK) equation and the fractional Caudrey-Dodd-Gibbon (CDG) equation as well. It is note that physical illustration may be useful to predict internal structure of the considered equations. The results confirm that sub-equations method is very effective and efficient to find exact traveling wave solutions of Wick-type fractional nonlinear evolution equations.
引用
收藏
页码:4053 / 4072
页数:20
相关论文
共 39 条
[1]  
Ablowitz M. J., 1996, LONDON MATH SOC LECT, V149, P512
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[3]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[4]   On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2016, 83 :234-241
[5]   SOLITONS AND DISCRETE EIGENFUNCTIONS OF THE RECURSION OPERATOR OF NONLINEAR EVOLUTION-EQUATIONS .1. THE CAUDREY-DODD-GIBBON-SAWADA-KOTERA EQUATION [J].
AIYER, RN ;
FUCHSSTEINER, B ;
OEVEL, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18) :3755-3770
[6]  
Alvaro H S., 2011, Int. J. Phys. Sci, V6, P7729
[7]  
[Anonymous], 2010, Stochastic partial differential equations, DOI DOI 10.1007/978-0-387-89488-1
[8]   Exact Traveling Wave Solutions of a Fractional Sawada-Kotera Equation [J].
Arshad, Muhammad ;
Lu, Dianchen ;
Wang, Jun ;
Abdullah .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (02) :211-223
[9]  
Atangana A., 2016, ENTROPHY, V18
[10]  
Atangana A., 2014, MATH PROBL ENG, V2014, DOI DOI 10.1155/2014/107535