Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system

被引:28
作者
Leonov, G. A. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
Homoclinic trajectories; Tricomi problem; Fishing principle; Glukhovsky-Dolzhansky system; Phase space; Parameters space; SHIMIZU-MORIOKA; DIMENSION; ATTRACTORS; LORENZ;
D O I
10.1016/j.physleta.2014.12.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system, describing three-mode model of rotating fluid convection, is obtained. New applications of the Fishing principle are developed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:524 / 528
页数:5
相关论文
共 20 条
[1]  
[Anonymous], VARIATIONAL PRINCIPL
[2]  
Boichenko V.A., 2005, Dimension Theory for Ordinary Differential Equations
[3]  
Boichenko VA, 1999, AM MATH SOC TRANSL 2, V193, P1
[4]  
Courant R., 1950, Dirichlets Principle, Conformal Mapping, and Minimal Surfaces
[5]  
Glukhovsky A. B., 1980, IZV AKAD NAUK SSSR S, V16, P311
[6]   Fishing principle for homoclinic and heteroclinic trajectories [J].
Leonov, G. A. .
NONLINEAR DYNAMICS, 2014, 78 (04) :2751-2758
[7]   Rossler systems: Estimates for the dimension of attractors and homoclinic orbits [J].
Leonov, G. A. .
DOKLADY MATHEMATICS, 2014, 89 (03) :369-371
[8]   Criteria for the existence of homoclinic orbits of systems Lu and Chen [J].
Leonov, G. A. .
DOKLADY MATHEMATICS, 2013, 87 (02) :220-223
[9]   SHILNIKOV CHAOS IN LORENZ-LIKE SYSTEMS [J].
Leonov, G. A. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03)
[10]   The tricomi problem for the Shimizu-Morioka dynamical system [J].
Leonov, G. A. .
DOKLADY MATHEMATICS, 2012, 86 (03) :850-853