Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte

被引:65
作者
Wang, Zhifang [1 ,2 ]
Zhang, Yushu [1 ]
Zhang, Penghui [1 ]
Yan, Dong [1 ]
Liu, Jinjin [1 ]
Chen, Yao [1 ,3 ]
Liu, Qi [6 ]
Cheng, Peng [1 ,2 ]
Zaworotko, Michael J. [4 ,5 ]
Zhang, Zhenjie [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr, Frontiers Sci Ctr New Organ Matter, Tianjin 300071, Peoples R China
[2] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Pharm, Tianjin 300071, Peoples R China
[4] Univ Limerick, Dept Chem Sci, Limerick V94 T9PX, Ireland
[5] Univ Limerick, Bernal Inst, Limerick V94T9PX, Ireland
[6] City Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
来源
ESCIENCE | 2022年 / 2卷 / 03期
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Thermal rearrangement; Flame retardancy; Solid polymer electrolytes; Lithium-ion batteries; POLYMERS; CRYSTALLINE; TRANSPORT;
D O I
10.1016/j.esci.2022.03.004
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Solid polymer electrolytes have demonstrated high promise to solve the safety problems caused by conventional liquid electrolytes in lithium ion batteries. However, the inherent flammability of most polymer electrolyte materials remains unresolved, hence hindering their further industrial application. Addressing this challenge, we designed and constructed a thermal-responsive imide-linked covalent organic framework (COF) bearing orthopositioned hydroxy groups as precursors, which can conduct a thermal rearrangement to transform into a highly crystalline and robust benzoxazole-linked COF upon heating. Benefiting from the release of carbon dioxide through thermal rearrangement reaction, this COF platform exhibited excellent flame retardant properties. By contrast, classic COFs (e.g., boronate ester, imine, olefin, imide linked) were all flammable. Moreover, incorporating polyethylene glycol and Li salt into the COF channels can produce solid polymer electrolytes with outstanding flame retardancy, high ionic conductivity (6.42 x 10-4 S cm-1) and a high lithium-ion transference number of 0.95. This thermal rearrangement strategy not only opens a new route for the fabrication of ultrastable COFs, but also provides promising perspectives to designing flame-retardant materials for energy-related applications.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 53 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Crystalline Anionic Germanate Covalent Organic Framework for High CO2 Selectivity and Fast Li Ion Conduction
    Ashraf, Shumaila
    Zuo, Yiming
    Li, Shuai
    Liu, Caixia
    Wang, Hang
    Feng, Xiao
    Li, Pengfei
    Wang, Bo
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (59) : 13479 - 13483
  • [3] Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks
    Castano, Ioannina
    Evans, Austin M.
    Li, Haoyuan
    Vitaku, Edon
    Strauss, Michael J.
    Bredas, Jean-Luc
    Gianneschi, Nathan C.
    Dichtel, William R.
    [J]. ACS CENTRAL SCIENCE, 2019, 5 (11) : 1892 - 1899
  • [4] Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction
    Chen, Hongwei
    Tu, Hangyu
    Hu, Chenji
    Liu, Yi
    Dong, Derui
    Sun, Yufei
    Dai, Yafei
    Wang, Senlin
    Qian, Hao
    Lin, Zhiyong
    Chen, Liwei
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (03) : 896 - 899
  • [5] Building Lithiophilic Ion-Conduction Highways on Garnet-Type Solid-State Li+ Conductors
    Cheng, Zhangyuan
    Xie, Maoling
    Mao, Yayun
    Ou, Jianxin
    Zhang, Sijing
    Zhao, Zheng
    Li, Jinlin
    Fu, Fang
    Wu, Jihuai
    Shen, Yanbin
    Lu, Derong
    Chen, Hongwei
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (24)
  • [6] The atom, the molecule, and the covalent organic framework
    Diercks, Christian S.
    Yaghi, Omar M.
    [J]. SCIENCE, 2017, 355 (6328)
  • [7] Designed synthesis of large-pore crystalline polyimide covalent organic frameworks
    Fang, Qianrong
    Zhuang, Zhongbin
    Gu, Shuang
    Kaspar, Robert B.
    Zheng, Jie
    Wang, Junhua
    Qiu, Shilun
    Yan, Yushan
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [8] Covalent Organic Frameworks: Design, Synthesis, and Functions
    Geng, Keyu
    He, Ting
    Liu, Ruoyang
    Dalapati, Sasanka
    Tan, Ke Tian
    Li, Zhongping
    Tao, Shanshan
    Gong, Yifan
    Jiang, Qiuhong
    Jiang, Donglin
    [J]. CHEMICAL REVIEWS, 2020, 120 (16) : 8814 - 8933
  • [9] Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications
    Gui, Bo
    Lin, Guiqing
    Ding, Huimin
    Gao, Chao
    Mal, Arindam
    Wang, Cheng
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (10) : 2225 - 2234
  • [10] Synthesis and characterization of Thermally Rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties
    Guo, Ruilan
    Sanders, David F.
    Smith, Zachary P.
    Freeman, Benny D.
    Paul, Donald R.
    McGrath, James E.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (02) : 262 - 272