Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

被引:2
|
作者
Ambrosio, Leonardo Andre [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
来源
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER | 2016年 / 180卷
基金
巴西圣保罗研究基金会;
关键词
Metamaterials; Mie scattering; Negative index materials; Lorenz-Mie theory; FOCUSED GAUSSIAN BEAMS; SPHEROIDAL PARTICLE; OPTICAL TWEEZERS; SHAPED BEAMS; BESSEL BEAM; SCATTERING; FORCES; METAMATERIAL; COEFFICIENTS; MOMENTUM;
D O I
10.1016/j.jqsrt.2016.04.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 50 条
  • [1] Generalized Lorenz-Mie theory of photonic wheels
    Orlov, S.
    Berskys, J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 261
  • [2] Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory
    Ambrosio, Leonardo A.
    Hernandez-Figueroa, Hugo E.
    BIOMEDICAL OPTICS EXPRESS, 2010, 1 (05): : 1284 - 1301
  • [3] An approach for a polychromatic generalized Lorenz-Mie theory
    Ambrosio, Leonardo A.
    de Sarro, Jhonas O.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 312
  • [4] Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory
    Briard, Paul
    Wang, Jia jie
    Han, Yi Ping
    OPTICS COMMUNICATIONS, 2016, 365 : 186 - 193
  • [5] Calculation of generalized Lorenz-Mie theory based on the localized beam models
    Jia, Xiaowei
    Shen, Jianqi
    Yu, Haitao
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 195 : 44 - 54
  • [6] OPTICAL LEVITATION EXPERIMENTS TO ASSESS THE VALIDITY OF THE GENERALIZED LORENZ-MIE THEORY
    GUILLOTEAU, F
    GREHAN, G
    GOUESBET, G
    APPLIED OPTICS, 1992, 31 (15): : 2942 - 2951
  • [7] On the accuracy of approximate descriptions of discrete superpositions of Bessel beams in the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    da Silva Santos, Carlos Henrique
    Lages Rodrigues, Ivan Eduardo
    2017 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC), 2017,
  • [8] Computing the scattering properties of participating media using Lorenz-Mie theory
    Frisvad, Jeppe Revall
    Christenseni, Niels Jorgen
    Jensen, Henrik Warm
    ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03):
  • [9] Generalized Lorenz-Mie theory of nonlinear optical trapping of core/shell hybrid nanoparticles
    Yadav, Sumit
    Devi, Anita
    De, Arijit K.
    COMPLEX LIGHT AND OPTICAL FORCES XVI, 2022, 12017
  • [10] Scattering of Lommel beams by homogenous spherical particle in generalized Lorenz-Mie theory
    Chafiq, A.
    Belafhal, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)