Optimizing the Decomposition of Time Series using Evolutionary Algorithms: Soil Moisture Analytics

被引:7
作者
Basak, Aniruddha [1 ]
Mengshoel, Ole J. [1 ]
Kulkarni, Chinmay [1 ]
Schmidt, Kevin [2 ]
Shastry, Prathi [1 ]
Rapeta, Rao [3 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] US Geol Survey, 959 Natl Ctr, Reston, VA 22092 USA
[3] Intel Corp, Santa Clara, CA 95051 USA
来源
PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17) | 2017年
基金
美国安德鲁·梅隆基金会;
关键词
Time Series Decomposition; Smoothing; STL; Stochastic Optimization; Soil Moisture; Smoothing Spline; GLOBAL OPTIMIZATION; PACKAGE;
D O I
10.1145/3071178.3071191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Soil moisture plays a crucial part in earth science, with impact on agriculture, ecology, hydrology, landslides, and water resources. Extremes in soil moisture, which we denote as peaks and valleys, caused by heavy rainfalls and subsequent dry weather, are very important when predicting future soil moisture or even landslides. Existing methods, like moving averages, have limitations when it comes to smoothing time series data while preserving peaks and valleys. In this work, we propose a novel method, HyperSTL, for extrema-preserving smoothing of soil moisture time series. The method optimizes an existing time series decomposition technique, Seasonal Decomposition of Time Series by Loess (STL). HyperSTL optimizes STL's control parameters, which we call hyperparameters, using an objective function over the decomposed components. We demonstrate in experiments with nine soil moisture datasets that using HyperSTL generally results in improved predictions compared to using other smoothing methods.
引用
收藏
页码:1073 / 1080
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 2011, TECHNICAL REPORT
[2]  
[Anonymous], 2005, NEW INTRO MULTIPLE T
[3]  
[Anonymous], 1991, Statistical Models in S
[4]  
[Anonymous], 1990, MONOGR STAT APPL PRO, DOI DOI 10.1214/SS/1177013604
[5]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[6]  
BOHACHEVSKY IO, 1986, TECHNOMETRICS, V28, P209
[7]  
Cleveland R. B., 1990, J Off Stat, V6, P3
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]   Parameter tuning for configuring and analyzing evolutionary algorithms [J].
Eiben, A. E. ;
Smit, S. K. .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :19-31
[10]   A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization [J].
Garcia, Salvador ;
Molina, Daniel ;
Lozano, Manuel ;
Herrera, Francisco .
JOURNAL OF HEURISTICS, 2009, 15 (06) :617-644