Effect of heat input on cracking in laser solid formed DZ4125 superalloy

被引:49
作者
Hu, Y. L. [1 ]
Lin, X. [1 ]
Song, K. [1 ]
Jiang, X. Y. [1 ]
Yang, H. O. [1 ]
Huang, W. D. [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
基金
中国博士后科学基金; 高等学校博士学科点专项科研基金; 国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Laser solid forming; Heat input; Liquation cracking; RESIDUAL-STRESS; CONSTITUTIONAL LIQUATION; ELECTRON-BEAM; MICROSTRUCTURE; BEHAVIOR; GAMMA'; INCONEL-738; DEPOSITION; IN738LC; ALLOY;
D O I
10.1016/j.optlastec.2016.06.008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
DZ4125 superalloy, which processes a high hot cracking sensitivity, is deposited on an as-cast substrate using laser solid forming (LSF) in order to investigate the effect of heat input on the cracking in the deposit and the heat affected zone (HAZ) in the substrate. It is shown that the liquation cracks occurred in LSFed sample with the lower heat input. The propagation extent of the cracks can be reduced with increasing the heat input. The crack-free deposits are achieved when the heat input reaches 150 J/mm. The variation of the residual stress in the LSFed sample with the heat input are discussed based on the micro-indentation analysis. It can be found that the elimination of the cracks with the high heat input can be attributed to the lower temperature gradient and thermal stresses in the LSFed sample. Besides, the backfilling of the liquid melt from the molten pool to the crack is also observed with the high heat input, which is also beneficial to the healing of crack in the HAZ of the molten pool. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 28 条
[1]   On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: An experimental-numerical investigation [J].
Alimardani, Masoud ;
Toyserkani, Ehsan ;
Huissoon, Jan P. ;
Paul, Christ P. .
OPTICS AND LASERS IN ENGINEERING, 2009, 47 (11) :1160-1168
[2]   Morphological changes of γ′ precipitates in superalloy IN738LC at various cooling rates [J].
Behrouzghaemi, S. ;
Mitchell, R. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 498 (1-2) :266-271
[3]   Effect of overlap rate on recrystallization behaviors of Laser Solid Formed Inconel 718 superalloy [J].
Cao, Jun ;
Liu, Fencheng ;
Lin, Xin ;
Huang, Chunping ;
Chen, Jing ;
Huang, Weidong .
OPTICS AND LASER TECHNOLOGY, 2013, 45 :228-235
[4]   On the determination of residual stress and strain fields by sharp indentation testing. Part I: Theoretical and numerical analysis [J].
Carlsson, S ;
Larsson, PL .
ACTA MATERIALIA, 2001, 49 (12) :2179-2191
[5]   Finite element modeling of multi-pass welding and shaped metal deposition processes [J].
Chiumenti, Michele ;
Cervera, Miguel ;
Salmi, Alessandro ;
Agelet de Saracibar, Carlos ;
Dialami, Narges ;
Matsui, Kazumi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (37-40) :2343-2359
[6]   Numerical modeling of inconel 738LC deposition welding: Prediction of residual stress induced cracking [J].
Danis, Yann ;
Lacoste, Eric ;
Arvieu, Corinne .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (14) :2053-2061
[7]   An investigation on thermal, metallurgical and mechanical states in weld cracking of Inconel 738LC superalloy [J].
Danis, Yann ;
Arvieu, Corinne ;
Lacoste, Eric ;
Larrouy, Thibaut ;
Quenisset, Jean-Michel .
MATERIALS & DESIGN, 2010, 31 (01) :402-416
[8]   Analysis of laser beam weldability of Inconel 738 superalloy [J].
Egbewande, A. T. ;
Buckson, R. A. ;
Ojo, O. A. .
MATERIALS CHARACTERIZATION, 2010, 61 (05) :569-574
[9]   Epitaxial laser metal forming:: analysis of microstructure formation [J].
Gäumann, M ;
Henry, S ;
Cléton, F ;
Wagnière, JD ;
Kurz, W .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 271 (1-2) :232-241
[10]   Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding [J].
Huang, Yongjun ;
Zeng, Xiaoyan .
APPLIED SURFACE SCIENCE, 2010, 256 (20) :5985-5992