The Effect of ALD-Zn(O,S) Buffer Layer on the Performance of CIGSSe Thin Film Solar Cells

被引:5
作者
Choi, Woo-Jin [1 ]
Park, Wan Woo [2 ]
Kim, Yangdo [3 ]
Son, Chang Sik [4 ]
Hwang, Donghyun [4 ]
机构
[1] Silla Univ, Energy Convergence Technol Ctr, Busan 46958, South Korea
[2] Adv Vacuum & Clean Equipment Optimizer Co Ltd, Res Ctr, Daegu 42724, South Korea
[3] Pusan Natl Univ, Sch Mat Sci & Engn, Busan 46241, South Korea
[4] Silla Univ, Div Mat Sci & Engn, Busan 46958, South Korea
基金
新加坡国家研究基金会;
关键词
Cu(In; Ga)(S; Se)(2) absorber layer; buffer layer; Zn(O; S) temperature window; S); ratio; thickness; atomic layer deposition; solar cell; DEPOSITION; OPTIMIZATION; PROGRESS; ZNO;
D O I
10.3390/en13020412
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we report the development of Cd-free buffers using atomic layer deposition (ALD) for Cu(In,Ga)(S,Se)(2)-based solar cells. The ALD process gives good control of thickness and the S/S+O ratio content of the films. The influence of the growth per cycle (GPC) and the S/(S+O) ratio, and the glass temperature of the atomic layer deposited Zn(O,S) buffer layers on the efficiency of the Cu(In,Ga)(S,Se)(2) solar cells were investigated. We present the first results from our work on cadmium-free CIGS solar cells on substrates with an aperture area of 0.4 cm(2). These Zn(O,S) layers were deposited by atomic layer deposition at 120 degrees C with S/Zn ratios of 0.7, and layers of around 30 nm. The Zn(O,S) 20% (Pulse Ratio: H2S/H2O+H2S) process results in a S/Zn ratio of 0.7. We achieved independently certified aperture area efficiencies of 17.1% for 0.4 cm(2) cells.
引用
收藏
页数:7
相关论文
共 17 条
[1]   Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables [J].
Burgess, C. H. .
MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (07) :809-821
[2]   High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers [J].
Ennaoui, A ;
Siebentritt, S ;
Lux-Steiner, MC ;
Riedl, W ;
Karg, F .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) :31-40
[3]   Buffer layers in Cu(In,Ga)Se2 solar cells and modules [J].
Hariskos, D ;
Spiering, S ;
Powalla, M .
THIN SOLID FILMS, 2005, 480 :99-109
[4]   The Zn(S,O,OH)/ZnMgO Buffer in Thin-Film Cu(In,Ga)(Se,S)2-Based Solar Cells Part II: Magnetron Sputtering of the ZnMgO Buffer Layer for In-Line Co-Evaporated Cu(In,Ga)Se2 Solar Cells [J].
Hariskos, D. ;
Fuchs, B. ;
Menner, R. ;
Naghavi, N. ;
Hubert, C. ;
Lincot, D. ;
Powalla, M. .
PROGRESS IN PHOTOVOLTAICS, 2009, 17 (07) :479-488
[5]   Atomic layer deposited zinc oxysulfide n-type buffer layers for Cu2ZnSn (S,Se)4 thin film solar cells [J].
Hong, Hee Kyeung ;
Kim, In Young ;
Shin, Seung Wook ;
Song, Gwang Yeom ;
Cho, Jae Yu ;
Gang, Myeng Gil ;
Shin, Jae Cheol ;
Kim, Jin Hyeok ;
Heo, Jaeyeong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 :43-50
[6]   Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation [J].
Hosenuzzaman, M. ;
Rahim, N. A. ;
Selvaraj, J. ;
Hasanuzzaman, M. ;
Malek, A. B. M. A. ;
Nahar, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 41 :284-297
[7]  
Jeong S.H., 2014, SEMICOND SCI TECH, V29, P075007
[8]   Low cost processing of CIGS thin film solar cells [J].
Kaelin, M ;
Rudmann, D ;
Tiwari, AN .
SOLAR ENERGY, 2004, 77 (06) :749-756
[9]   Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O,S,OH)x buffer layer [J].
Kushiya, K ;
Tachiyuki, M ;
Nagoya, Y ;
Fujimaki, A ;
Sang, BS ;
Okumura, D ;
Satoh, M ;
Yamase, O .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) :11-20
[10]   Determination of dominant recombination paths in Cu(In,Ga)Se2 thin-film solar cells with ALD-ZnO buffer layers [J].
Malm, U ;
Malmström, J ;
Platzer-Björkman, C ;
Stolt, L .
THIN SOLID FILMS, 2005, 480 :208-212