Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data

被引:49
作者
Smith, Aaron M. [1 ]
Walsh, Jonathan R. [1 ]
Long, John [2 ]
Davis, Craig B. [3 ]
Henstock, Peter [4 ]
Hodge, Martin R. [5 ]
Maciejewski, Mateusz [5 ]
Mu, Xinmeng Jasmine [6 ]
Ra, Stephen [2 ]
Zhao, Shanrong [2 ]
Ziemek, Daniel [7 ]
Fisher, Charles K. [1 ]
机构
[1] Unlearn AI Inc, San Francisco, CA 94132 USA
[2] Pfizer Inc, Worldwide Res & Dev, Computat Sci, Cambridge, MA USA
[3] Pfizer Inc, Oncol Global Prod Dev, San Diego, CA USA
[4] Pfizer Inc, Business Technol, Cambridge, MA USA
[5] Pfizer Inc, Worldwide Res & Dev, Inflammat & Immunol, Cambridge, MA USA
[6] Pfizer Inc, Worldwide Res & Dev, Oncol Res & Dev, San Diego, CA USA
[7] Pfizer Pharma GmbH, Worldwide Res & Dev, Inflammat & Immunol, Berlin, Germany
关键词
Transcriptomics; RNA-seq; Normalization methods; Machine learning; Deep learning; Representation learning; Phenotype prediction; Molecular diagnostics; MESSENGER-RNA; EXPRESSION; REVEALS; DISEASE;
D O I
10.1186/s12859-020-3427-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background The ability to confidently predict health outcomes from gene expression would catalyze a revolution in molecular diagnostics. Yet, the goal of developing actionable, robust, and reproducible predictive signatures of phenotypes such as clinical outcome has not been attained in almost any disease area. Here, we report a comprehensive analysis spanning prediction tasks from ulcerative colitis, atopic dermatitis, diabetes, to many cancer subtypes for a total of 24 binary and multiclass prediction problems and 26 survival analysis tasks. We systematically investigate the influence of gene subsets, normalization methods and prediction algorithms. Crucially, we also explore the novel use of deep representation learning methods on large transcriptomics compendia, such as GTEx and TCGA, to boost the performance of state-of-the-art methods. The resources and findings in this work should serve as both an up-to-date reference on attainable performance, and as a benchmarking resource for further research. Results Approaches that combine large numbers of genes outperformed single gene methods consistently and with a significant margin, but neither unsupervised nor semi-supervised representation learning techniques yielded consistent improvements in out-of-sample performance across datasets. Our findings suggest that using l(2)-regularized regression methods applied to centered log-ratio transformed transcript abundances provide the best predictive analyses overall. Conclusions Transcriptomics-based phenotype prediction benefits from proper normalization techniques and state-of-the-art regularized regression approaches. In our view, breakthrough performance is likely contingent on factors which are independent of normalization and general modeling techniques; these factors might include reduction of systematic errors in sequencing data, incorporation of other data types such as single-cell sequencing and proteomics, and improved use of prior knowledge.
引用
收藏
页数:18
相关论文
共 57 条
[1]  
AITCHISON J, 1982, J ROY STAT SOC B, V44, P139
[2]  
[Anonymous], 2017, arXiv
[3]  
Arora R, 2012, ANN ALLERTON CONF, P861, DOI 10.1109/Allerton.2012.6483308
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[6]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[7]  
Bowman S. R., 2016, P SIGNLL C COMP NAT, P10
[8]   TFcheckpoint: a curated compendium of specific DNA-binding RNA polymerase II transcription factors [J].
Chawla, Konika ;
Tripathi, Sushil ;
Thommesen, Liv ;
Laegreid, Astrid ;
Kuiper, Martin .
BIOINFORMATICS, 2013, 29 (19) :2519-2520
[9]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[10]   Reproducible RNA-seq analysis using recount2 [J].
Collado-Torres, Leonardo ;
Nellore, Abhinav ;
Kammers, Kai ;
Ellis, Shannon E. ;
Taub, Margaret A. ;
Hansen, Kasper D. ;
Jaffe, Andrew E. ;
Langmead, Ben ;
Leek, Jeffrey T. .
NATURE BIOTECHNOLOGY, 2017, 35 (04) :319-321